Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Безопасность в техносфере, 2015, № 1 (52)

Бесплатно
Основная коллекция
Количество статей: 11
Артикул: 433931.0005.01
Безопасность в техносфере, 2015, вып. 1(52) - М.: НИЦ ИНФРА-М, 2015. - 88 с. . - Текст : электронный. - URL: https://znanium.com/catalog/product/506939 (дата обращения: 03.05.2024)
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
На правах рекламы

№ 1 (52)/2015 
январь–февраль

НАУЧНО-МЕТОДИЧЕСКИЙ И ИНФОРМАЦИОННЫЙ ЖУРНАЛ
SCIENTIFIC, METHODICAL AND INFORMATION MAGAZINE

В номере 
In this issue

НаучНые осНовы формироваНия техНосферы

Scientific BaSeS of technoSphere formation

Niels I. Meyer
Нильс И. Мейер
Analysis of a Global Green Transition  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3
Анализ глобального «зеленого» перехода

Экологическая безопасНость

ecological Safety

М.Н. Корсак, С.А. Мошаров, К.О. Юсупова, М.И. Кроленко
M.N. Korsak, S.A. Mosharov, K.O. Yusupova, M.I. Krolenko
Прогноз весеннего цветения фитопланктона в Учинском  
водохранилище  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
The Forecast of Phytoplankton Spring Blossoming in the Uchinsky Reservoir

А.П. Левич, Н.Г. Булгаков,  А.Л. Барабаш, Д.В. Рисник, П.В. Фурсова
A.P. Levich, N.G. Bulgakov, A.L. Barabash, D.V. Risnik,P.V. Fursova
Влияние экологических факторов на показатели заболеваемости 
населения  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
Influence of Ecological Factors on Population Morbidity Indicators

методы и средства обеспечеНия безопасНости

methodS and meanS of Safetyy

В.В. Киселев, Ю.А. Хохолов, М.В. Каймонов
V.V. Kiselev, Yu.A. Khokholov, M.V. Kaymonov
Вклад горной науки Якутии в решение проблем экологической 
безопасности республики   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30
Yakutia’s Mining Science Contribution to the Republic’s Ecological Security 
Problems Solution

чрезвычайНые ситуации

emergency

С.С. Тимофеева, О.В. Морозова
S.S. Timofeeva, O.V. Morozova
Заторные наводнения в Иркутской области и возможности  
их ликвидации комбинированными методами  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Ice-Jam Floods in the Irkutsk Region and Possibility of Their Elimination  
by Combined Methods

Р.А. Дурнев, А.С. Котосонова, Р.Л. Галиуллина
R.A. Durnev, A.S. Kotosonova, R.L. Galiullina
Модель информирования населения при аварии  
на химически опасном объекте: системно-динамический подход  .  .  .  .  .  . 45
Model of Community Awareness at Accident on Chemically Hazardous Object:  
System and Dynamic Approach

Свидетельство Роскомнадзора

ПИ № ФС77-44004
Издается с 2006 года

Учредитель:
Коллектив редакции журнала

Издается: 
при поддержке МГТУ им. Н.Э. Баумана, УМО 
вузов по университетскому политехническому 
образованию и НМС по безопасности 
жизнедеятельности Минобрнауки России

Главный редактор 
Владимир Девисилов

Издатель:
ООО «Научно-издательский центр ИНФРА-М»

Отдел предпечатной подготовки 
Белла Руссо

Выпускающий редактор 
Анастасия Путкова 
Тел. (495) 280-15-96 (доб. 501) 
e-mail: 501@infra-m.ru

Отдел подписки 
Маргарита Назарова 
Тел.: (495) 280-15-96 (доб. 249) 
e-mail: podpiska@infra-m.ru

Присланные рукописи не возвращаются.

Точка зрения редакции может не совпадать  
с мнением авторов публикуемых материалов.

Редакция оставляет за собой право самостоятельно  
подбирать к авторским материалам иллюстрации, менять 
заголовки, сокращать тексты и вносить в рукописи необходимую стилистическую правку без согласования с авторами. 
Поступившие в редакцию материалы будут свидетельствовать о согласии авторов принять требования редакции.

Перепечатка материалов допускается  
с письменного разрешения редакции.

При цитировании ссылка на журнал «Безопасность 
в техносфере» обязательна.

Письма и материалы для публикации  
высылать по адресу:  
127282, Россия, Москва, ул. Полярная,  
д. 31в, стр. 1, журнал «БвТ»  
Тел.: (495) 280-15-96 (доб. 501) 
Факс: (495) 280-36-29 
e-mail: magbvt@list.ru, mag12@infra-m.ru,  
bvt@magbvt.ru 
Сайты журнала:  
http://www.magbvt.ru, http://www. naukaru.ru

© ООО «Научно-издательский центр ИНФРА-М», 
2015

Формат 60×84/8.  Бумага офсетная № 1. 
Тираж 1000 экз.
Подписные индексы:  
в каталоге агентства «Роспечать» —  
18316, объединенном каталоге 
«Пресса России» — 11237

DOI 10 .12737/issn .1998-071X

образоваНие

education

В.А. Туркин, М.Н. Чура, Н.Н. Чура
V.A. Turkin, M.N. Chura, N.N. Chura
О проблемах реализации новых дисциплин подготовки бакалавра  
по направлению  «Техносферная безопасность»  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
About Problems Related to Realization of New Disciplines  
for “Technosphere Safety” Bachelor Training Direction

В.А. Девисилов
V.A Devisilov
Подготовка кадров по безопасности труда в рамках направления
«Техносферная безопасность»  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59
Staff Training on Work Safety Within a Framework of “Technosphere Safety”  
Direction

аНалитический обзор

analytical review

А.С. Камруков, Д.О. Новиков
A.S. Kamrukov, D.O. Novikov
Современные окислительные и фотоокислительные методы 
разрушения комплексонов в жидких радиоактивных отходах  .  .  .  . 68
Modern Oxidizing and Photo Oxidative Methods of Complexons  
Destruction in Liquid Radioactive Waste

иНформируем читателя

information

О дисциплине «Безопасность жизнедеятельности»  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
About “Life Safety” Subject

Содержание журнала за 2014 год  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88
Journal’s Content for 2014

Журнал «Безопасность в техносфере» включен в перечень 
ведущих научных журналов, в которых по рекомендациям 
ВАК РФ должны быть опубли кованы научные результаты 
диссертаций на соискание ученых степеней доктора  
и кандидата наук, а также в американскую базу периодических 
и продолжающихся изданий Ulrich’s .

РЕДАКЦИОННЫЙ СОВЕТ
Александров Анатолий Александрович (Председатель совета),
ректор МГТУ им. Н.Э. Баумана, заведующий кафедрой, д-р техн. 
наук, профессор
Алёшин Николай Павлович, 
зав. кафедрой МГТУ им. Н.Э. Баумана, академик РАН,  
д-р техн. наук, профессор
Аткиссон Алан (Alan AtKisson) — Швеция (Sweden),
Президент Atkisson Group, советник Комиссии ООН по 
устойчивому развитию, член Комиссии по науке и технологическому развитию при Президенте Еврокомиссии Жозе Мануэле 
Баррозу (EU Commission President’s Council of Advisors on Science 
and Technology)
Бабешко Владимир Андреевич,
зав. кафедрой Кубанского государственного университета, 
директор НЦ прогнозирования и предупреждения 
геоэкологических и техногенных катастроф, академик РАН,  
д-р физ.-мат. наук, профессор
Бухтияров Игорь Валентинович
директор НИИ медицины труда РАМН, д-р мед. наук, профессор
Гарелик Хемда (Hemda Garelick) — Великобритания (United Kingdom), 
Professor of Environmental Science and Public Health Education, 
School of Health and Social Sciences (HSSC) Middlesex University,
Programme Leader for Doctorate in Professional Studies Environment and Risk (HSSC), PhD.
Касимов Николай Сергеевич, 
декан географического факультета МГУ им. М.В. Ломоносова, 
вице-президент Русского географического общества,  
зав. кафедрой, академик РАН, д-р геогр. наук, профессор
Махутов Николай Андреевич, 
главный научный сотрудник Института машиноведения им. 
А.А. Благонравова РАН, руководитель рабочей группы при 
Президиуме РАН по проблемам безопасности, чл.-корр РАН,  
д-р техн. наук, профессор
Мейер Нильс И . (Niels I . Meer) — Дания (Denmark), 
профессор Датского технического университета (дат. Danmarks 
Tekniske Universitet, DTU, англ. Technical University of Denmark)
Соломенцев Юрий Михайлович, 
президент МГТУ «Станкин», заведующий кафедрой, чл.-корр. РАН, 
д-р техн. наук, профессор
Тарасова Наталия Павловна,
директор института  проблем устойчивого развития, 
заведующая кафедрой РХТУ им. Д.И. Менделеева,  
чл.-корр. РАН, д-р хим. наук

РЕДАКЦИОННАЯ КОЛЛЕГИЯ
Васильев Андрей Витальевич,
зав. кафедрой Самарского государственного технического 
университета, д-р техн. наук, профессор
Вараксин Алексей Юрьевич, 
заведующий отделением Объединенного института высоких 
температур РАН, чл.-корр. РАН, д-р физ.мат. наук, профессор
Власов Валерий Александрович, 
секретарь Совета Безопасности Республики Татарстан,  
канд. техн. наук, профессор, генерал-лейтенант
Девисилов Владимир Аркадьевич,
доцент кафедры МГТУ им. Н.Э. Баумана, канд. техн. наук
Дыганова Роза Яхиевна,
зав. кафедрой Казанского государственного энергетического 
университета, д-р биол. наук, профессор
Дьяченко Владимир Викторович,
заместитель директора по научной и учебной работе 
Новороссийского политехнического института (филиала) КубГТУ, 
профессор, канд. сел.-хоз. наук, д-р геогр. наук
Егоров Александр Федорович,
зав. кафедрой РХТУ им. Д.И. Менделеева, д-р техн. наук, профессор
Козлов Николай Павлович,
главный научный сотрудник НУК «Э» МГТУ им. Н.Э. Баумана,  
д-р техн. наук, профессор
Кручинина Наталия Евгеньевна,
декан инженерного экологического факультета, зав. кафедрой 
РХТУ им. Д.И. Менделеева, канд. хим. наук, д-р техн. наук, профессор
Майстренко Валерий Николаевич,
зав. кафедрой Башкирского государственного университета,  
чл.-корр. АН Республики Башкортостан, профессор, д-р хим. наук
Матягина Анна Михайловна,
доцент Московского государственного университета 
гражданской авиации, канд. техн. наук
Никулин Валерий Александрович,
исполнительный вице-президент Российской инженерной 
академии, ректор Камского института гуманитарных  
и инженерных технологий,  д-р техн. наук, профессор
Павлихин Геннадий Петрович,
д-р техн. наук, профессор МГТУ им. Н.Э. Баумана
Петров Борис Германович,
руководитель Приволжского Управления Ростехнадзора,  
канд. техн. наук, профессор
Пушенко Сергей Леонардович,
директор ИИЭС Ростовского государственного строительного 
университета, канд. техн. наук, профессор
Рахманов Борис Николаевич,
профессор Московского государственного университета путей 
сообщения, д-р техн. наук
Реветрио Роберто ( Roberto Revetrio)
д-р наук (PhD), профессор Университета Генуи, Италия
Рубцова Нина Борисовна,
заведующая научным координационно-информационным 
отделом ГУ НИИ медицины труда РАМН, д-р биол. наук
Севастьянов Борис Владимирович,
зав. кафедрой «Безопасность жизнедеятельности»  
Ижевского государственного технического университета,  
канд. пед. наук, д-р техн. наук, профессор
Сущев Сергей Петрович, 
генеральный директор ООО «Центр исследований 
экстремальных ситуаций», д-р техн. наук, профессор
Трофименко Юрий Васильевич,
зав. кафедрой Московского автомобильно-дорожного института 
(государственного технического университета),  
д-р техн. наук, профессор
Федорец Александр Григорьевич,
директор Автономной некоммерческой организации  
«Институт безопасности труда», канд. техн. наук, доцент

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

Безопасность в техносфере, №1 (январь-февраль), 2015
3

УДК: 502.335
DOI: 10.12737/8225
Analysis of a Global Green Transition

Niels I. Meyer, Ph.D., Dr. Techn.

Technical University of Denmark, Lyngby, Denmark

e-mail: nim@byg.dtu.dk

Mitigation of global warming and transitioning to a green and sustainable world 
are counteracted by a number of barriers and dilemmas. The paper analyzes a 
number of these barriers and dilemmas in order to highlight efficient strategies 
and solutions for a sustainable development. The dilemmas include the following 
examples:
• There are limits to economic and material growth in a finite globe, but most 
governments in industrial countries are calling for more growth in a period of 
financial crisis.
• More equity is required to stem the desire for growth, but inequity is increasing.
• The increase in global temperature should stay below two degrees centigrade 
in order to avoid irreversible consequences, but the present path points to four 
degrees or more.
• At least 50% of known reserves of fossil fuels must remain underground in order to 
avoid a temperature increase higher than two degrees, but a number of industrial 
countries are now promoting exploitation of new fossil sources like shale gas and 
oil from tar sand.
• Reversing population growth facilitates sustainable development, but most 
governments of industrial nations appear to be more concerned about decreases 
in their population.

Keywords:  
sustainable energy,  
policy means,  
green transition.

1. Introduction
The world is presently faced with a number of serious 
problems including global warming and climate change, 
limits to economic and material growth, increasing inequities, misleading economic models and theories, and 
financial crises. Most national governments in the Organisation For Economic Co-Operation And Development (OECD) attempt to maintain traditional growth 
rates based on neoliberal principles. However, they do 
not appear to realize that a sustainable future requires 
radical changes in political, economic and institutional 
systems on international and national levels.
In relation to the problem of global warming, it has 
not been possible to date to obtain international commitments for binding reductions of CO2 emissions. 
However, there seems to be international consensus concerning the danger of irreversible consequences if the 
increase in global temperature is allowed to surpass two 
degrees centigrade. Recent analyses have concluded that 
in order to avoid this transition at least 50 % of known 

fossil reserves should remain untapped underground 
[IEA, 2012]. It is not obvious how this condition would 
be implemented in practice. Moreover, with the recent 
exploitation of non-traditional energy sources like shale 
gas and shale oil, the goal of limited use appears to be 
even more problematic. This issue should be high on the 
agenda of the united nations (UN), but so far it is not 
the case.
This paper will focus on the role of the rich industrial countries, as they are responsible for most of the 
present problems. In addition, such countries have the 
necessary economic and technological power to implement a green transition to a world that is not dependent 
on fossil fuels.  
However, it should not be overlooked that there are 
a number of barriers for this transition. Strong financial 
power is connected to vested interests in production of 
fossil fuels, while concern about sustainable development is relegated as a low priority on the money-based 
agenda. Here, significant changes are needed to yield 

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

4

less power to the market and private vested interests. 
The paper includes concrete proposals for such changes.
The implications of limits to growth in a finite world 
should be at the center of any strategy for a sustainable 
future. Unfortunately, that is not the case. Instead, it has 
become fashionable to speak of green growth in order to 
avoid taking the substance of limits to growth seriously. 
It will be argued in this paper that green growth in the 
present framework is an illusion and typically an excuse 
for continuing traditional growth with green cover.
The need for significant societal and institutional 
changes to implement a sustainable green transition to 
a world that is not dependent on fossil fuels is often neglected in comparison with the focus on new technological solutions. The focus of this paper is designed with 
the opposite priority.

2 . Limits To Growth
Several pioneers of economics have warned that 
pursuing growth forever is not desirable [Mill, 1900; 
Keynes, 1931]. Growth should be considered as a temporary phase, until the global population has achieved 
satisfactory material welfare. The concept of limits to 
growth captured broad public interest with the publication of a report with the same name in 1972.

2.1. The Limits to Growth report
An extensive study of the “World Problematic” was 
initiated by The Club of Rome [Nørgård et al., 2010; 
Meyer, AtKisson, 2012], resulting in the 1972 report 
The Limits to Growth (LtG) [Meadows  et al., 1972]. The 
report presents a number of scenarios based on an ag
gregated computer model, simulating the global development in population, food production, use of nonrenewable resources like fossil fuels, industrial output, 
and in environmental pollution.
The report concluded that continuation of the actual growth policies in population, industrialization, 
food production, and consumption of non-renewable 
resources would most likely lead to some kind of collapse during the 21th century, due to resource scarcity, 
over-pollution, over-population, etc. This collapse scenario attracted the most attention. However, alternative 
scenarios were also presented in the report illustrating 
how a change of course could lead to an environmentally sustainable development path, which is also able to 
satisfy all people’s physical needs.
Many critics of the report focused exclusively on 
the collapse scenario, and stated by the 1990s that the 
collapse had failed to materialize. However, the analysis in that scenario finds the collapse to occur decades 
later [Nørgård et al., 2010]. The recent recognition of 
global warming from CO2 concentration in the atmosphere and an approaching peak in oil supply combined 
with the current financial crises fits rather well with the 
growth scenario in LtG. As shown in Fig. 1, real developments in the main parameters in LtG have followed 
quite closely the main trends in the report’s standard 
(collapse) scenario, which leads to collapse around 2040 
[Vuuren van, Faber, 2009; Turner, 2009]. See also the 
two later revisions of LtG [Meadows et al., 1992; Meadows et al., 2004]. Thus, the basis for the warnings from 
LtG remain and should be taken seriously before it is 
too late.

Figure 1 .  The observed global developments of four essential parameters, here shown as black dots, roughly follow the outcome in the Standard run with growth and collapse, rather than the Stabilized run from ‘The Limits to Growth’ model. [Vuuren van, Faber, 2009].

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

Безопасность в техносфере, №1 (январь-февраль), 2015
5

2.2. The illusion of decoupling and green growth
The so-called decoupling between GDP and energy 
consumption is a statistical myth or illusion based on 
macroeconomic abstractions [Nørgård, 2009], since all 
economic activities encompassed within GDP involve 
some energy consumption.
A growing GDP will always push energy consumption upwards, but this trend may be reduced for some 
time by savings from more efficient technologies. The 
coupling between GDP and energy consumption has 
clearly been demonstrated in real life by the drop in energy consumption during the recent recession in OECD 
countries. The use of the term decoupling has unfortunately led to the seductive perception of green growth, 
i.e. that GDP can grow in an unlimited way, without any 
impact on energy consumption. What can rightfully be 
claimed is that energy consumption need not grow at the 
same rate as the GDP.
A true decoupling between GDP and energy consumption is not possible, but it is possible to obtain decoupling between GDP and CO2 emission by shifting 
to an energy supply without CO2 emission. Based on 
the current path, however, even in the most optimistic 
case, this will not be achieved on a global scale before 
2050 with serious climate change effects expected to occur during the period. Recognizing this, the concept of 
green growth is generally a dangerous and painted excuse to continue the present growth with minor corrections.
On a related count, it is worth underscoring that 
there will always be a coupling between human economic activities and environmental impact, since all energy supplies, including renewable energy sources, have 
some environmental impact.

2.3. New paradigm of employment
In a balanced economy, the number of working hours 
should be reduced with increasing productivity   resulting 
in more free time for everybody.
One of the rationales for promoting continued economic growth in the present ‘neoliberal economy’ (discussed more fully below) is the employment effect of 
increasing productivity. Briefly sketched, the economic 
growth-employment idea works as follows. If productivity increases by 2% per year, there will be about 2% 
less jobs available next year, provided no new economic 
growth occurs. This proposition, however is flawed, as 
it assumes a fixed number of working hours per week 
which is not a natural law. 
A solution which can account better for sustainable 
development and employment would introduce a flexible number of working hours per week, dependent on 
the state of the market. When there is a lack of jobs, 
the number of working hours is reduced, and vice ver
sa. This could be combined with work-sharing, so that 
forced unemployment is avoided. As the economist John 
Maynard Keynes expressed in the 1930s: “Take care of 
unemployment and the budget will take care of itself.” 
In addition, this scheme will abolish the present inhumane system that locks millions of people in industrial 
countries into forced unemployment.
In rich countries this system could be supplemented 
by a general basic income (citizens salary) scheme securing more freedom for people to choose their individual 
life style [Meyer et al., 1981].

2.4. Misleading economic models and theories
A change in economic policy is required where the 
principles of ecological economy are given much higher 
priority. This is not a sufficient condition for sustainable 
development, but rather a necessary condition.
Prevailing ideas in neoclassical/neoliberal economics have been responsible for a number of financial crises since the 1980s, with the present crisis from 
2008 still ongoing. Recently, the two Nobel Prize winners in economy, Joseph Stiglitz and Paul Krugman, 
openly acknowledged that neoliberal economic theory 
and models have no real scientific basis and have been 
more harmful than useful. Other realistic economists 
have used the phrase that economy is politics in disguise 
[Chang, 2010].
It is high time that these disclosures are included in 
economic university education and are taken into account in government policies. One alternative is to focus 
on ideas from ecological economics rather than neoclassical/neoliberal economics. The main difference between these two systems is briefly described as follows, 
drawing upon Herman Daly’s references to sustainable 
development [Daly, 2007].  
Standard neoliberal economics (SNE) ideas are 
based on the premise of an isolated economic system 
with circular flow of production and consumption. SNE 
is primarily focused on efficient allocation of resources 
with minor attention to fair distribution and typically 
no attention to economic scale.  
In contrast to this, ecological economics (EE) considers an economy to be an open subsystem of a finite, 
non-growing biosphere that is closed with respect to 
matter but open to a (non-growing) flow of solar energy. 
EE focuses first on the sustainability of the economic 
scale and its material through-put. Second priority is 
given to fair distribution, while efficient allocation is positioned still lower as a third priority. 
Considered together, SNE is mainly concerned with 
the variation of a narrowly defined GDP, where depletion of natural capital and a number of pollution effects 
are often not included as costs in the accounting. EE instead points out that growth in GDP may result in un
Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

6

economic growth due to depletion of natural capital and 
pollution effects. Such a tendency towards uneconomic 
growth is already observed in some OECD countries 
[Daly, 2007].  Recent studies by economists and other 
researchers indicate that in societies where citizens’ basic needs are met, further income and consumption will 
not increase people’s satisfaction and happiness [Jackson, 2009; Layard, 2006; Jackson, 2005; Nørgård, 2006]. 
In other words, in affluent parts of the world, continued 
growth in GDP is not necessary for a good life.
Going further, SNE favors global economic integration based on free trade and free capital mobility with 
reference to the classical argument of “comparative advantage”. John Maynard Keynes pointed out in the 1930s 
that free capital movement destabilizes the national 
economic systems. He also proposed that independent 
national banks should control such capital movements 
in order to avoid destabilization of the economy. EE 
recognizes that the classical economics model did not 
include free capital movement and that internalization 
of environmental costs tends to be given low priority in 
a global race to cut costs and attract capital. Unfortunately, the EU has abolished this form of control in the 
1980s and made the free capital movement part of the 
EU constitution.
An important sustainability question then turns to 
intergenerational balance. In standard macroeconomic 
modeling, this is often settled by introducing discount 
factors for future economic events. However, discount 
factors of 4 % or higher mean that the welfare of future generations is given low priority  Never-the-less, a 
number of governments in OECD countries have official 
discount  factors in this range. In any case, the intergenerational balance cannot be satisfied by such a simple 
technical factor in economic models. The intergenerational distribution problem is a complex one and should 
recognize that that different generations may have different goals and priorities. The focus should not be on 
efficient allocation, but rather on keeping flexible choices and opportunities open for future generations.

2.5. Global warming: Adaptation or mitigation?
Investments in adaptation should not be allowed to 
reduce the necessary investments in mitigation.
Strategies for coping with global warming include 
both mitigation and adaptation. The former stems the 
tide of the shift, whereas the latter develops an altered 
way of dealing with the shift. As it is becoming more and 
more clear that the efforts to mitigate global warming are 
too weak and too slow, the general focus is to some extent 
moving from mitigation to adaptation. This may turn out 
to be an expensive and dangerous shift in strategy.
The British government’s report on climate change 
[Stern, 2007] noted that costs can be expected to be an 

order of magnitude more expensive for the world to 
continue with a business as usual approach, rather than 
investing quickly and strongly in mitigation of global 
warming. This indicates that it may be a costly strategy to shift the emphasis from mitigation to adaptation. 
Increasing investments in adaptation with limited economic resources  available in the present financial situation may further delay the necessary investments in 
mitigation.
The shift of investments from mitigation to adaptation may give rise to costly consequences if the global 
increase in temperature passes the critical two degrees 
centigrade sooner than expected.
It may be concluded, that investments in adaptation 
should be concentrated to the cheapest and most urgent 
projects in order to avoid costly investment failures. 

2.6. The importance of equity
Equity is fundamental to the well-being of society.  
There is solid documentation that societies with a 
high degree of economic and social equity are doing better on essential parameters like health, living standard, 
low criminality, low rates of suicide, high personal life 
satisfaction, high trade competitiveness etc. [Wilkinson, 
Pickett, 2009].
The degree of equity may be described by the socalled Gini-coefficient with values between zero and one. 
If the national income is divided equally between all 
citizens, the value is zero. If all of the national income 
goes to one person, the value equals one. As a rule of 
thumb, a society with a Gini-coefficient less than 0.3 can 
count on a rather solid social stability, while societies 
with values above 0.4 are in danger of running into serious social problems. The Nordic countries have Ginicoefficients between 0.23 and 0.25, whereas the numbers 
for the US and South Africa are 0.45 and 0.65 respectively. Surprisingly, high equity is low on the priority list 
for many countries.
Comparatively speaking, the lack of equity between 
western industrial nations and developing nations is a 
serious barrier for commitments on international agreements concerning CO2 emission reductions. This issue 
should be taken more seriously by the international 
Conference of Parties on mitigation of global warming. 

3 . Emission Trading Systems
A principal approach to limit CO2 emissions centers on government caps for the allowed emissions from 
selected parts of industrial production or private households. Examples of such schemes follow.

3.1. Industrial carbon quota
The Emission Trading System has reflected unimpressive carbon savings to date.

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

Безопасность в техносфере, №1 (январь-февраль), 2015
7

In effect for some time, the EU’s Emission Trading System (ETS) embodies industrial carbon quotas. 
The ETS is designed so that energy-intensive industries 
(including electric utilities) are given carbon emission 
limits that are specified by the EU Commission and national governments. The experience with this cap-andtrade scheme to date has already revealed a number of 
shortcomings, resulting in unimpressive carbon savings 
within EU. It remains to be seen whether stricter caps 
and other reforms will produce the desired results during the second period of the scheme after 2013 [EU Commission, 2008]. So far, agreement about the strengthening of the ETS has been prevented by opposition from 
some member countries, especially Poland. However, 
the EU Commission continues to work on establishing 
constructive changes through consensus in the ETS.

3.2. Personal carbon allowances
Considering the slow progress in mitigation of climate change, the concept of Personal Carbon Allowances 
deserves further attention as a supplement to existing 
schemes.
Energy taxes and subsidy systems for energy conservation have so far not been efficient in convincing private households to implement sufficient building renovations and other forms of energy conservation.
One alternative proposal is called Personal Carbon 
Allowances (PCA) [Fawcett et al., 2009]. In the  PCA 
scheme, every adult is allotted an equal, tradable ration 
of CO2 emission per year related to their consumption 
of selected energy services for private households. Compared to the cap-and-trade system used in the industrial 
sector, PCAs apply to individuals and influence their 
behavior. PCA establishes a direct mechanism with negligible uncertainty for emission reduction in the household sector. For simplicity, one proposal is that PCA 
should be related only to “direct” energy consumption, 
i.e., energy used for personal travel plus heating and 
electricity within the household [Fawcett et al., 2009].
So far, no country has introduced a PCA scheme 
and only a few industrial countries are giving serious 
consideration to the scheme. The most extensive discussion of PCA has taken place in the UK where UK’s 
Department for Environment, Food and Rural Affairs 
(DEFRA) published a report on the scheme in 2008 [DEFRA, 2008] with a positive evaluation of its potential. 
A similar conclusion was expressed by the Chairman of 
UK’s Environment Agency, Lord Smith of Finsbury, in 
a speech at the agency’s annual conference in London 
in November 2009. In both cases it was stated that the 
scheme needs relative long time to develop and that the 
cost of administration should be analyzed more closely.
The efficiency of a PCA system is dependent on the 
particular energy system in the country and on the in
stitutional arrangements. Analysis of the potential of 
PCA in the UK and Denmark [Fawcett et al., 2009] indicates that for these two countries the scheme would 
cover 30 to 50% of the total national CO2 emissions. 
The PCA requires systematic government support to 
the households in order that they may benefit from the 
scheme and accept it as a positive challenge. 

4 . Examples Of Solutions
In this section, examples for international and national strategies are described. More details may be 
found in two recent books (Jackson, 2012; Meyer, 2012).

4.1. International changes
Existing international institutions, like the World 
Trade Organization (WTO), International Monetary 
Fund (IMF), and the World Bank, present serious obstacles for a sustainable development, since their policies and priorities have been closely linked to neoliberal 
theory and models [Jackson, 2012]. This reality has been 
harmful for sustainable development, especially for 
many developing countries.
In recent years, these international institutions have 
slowly begun to change their policies due to the unsatisfactory results. However, the basic rules for the institutions do not allow them to give sufficiently high priority 
to a sustainable green transition. Here, it is important to 
consider alternatives to the existing institutions [Jackson, 2012; Meyer, 2012].  

Alternative trade organization
The main priority of the present WTO is to promote 
international trade and overcome barriers to free trade 
associated with customs duties on import or export subsidies. Concerns for the negative consequences of trade 
for the environment and social equity figure on a limited to non-existent basis within the WTO. The WTO’s 
focus is based on the conception that free international 
trade is an advantage for all parties – in spite of solid 
documentation that this is not the case [Jackson, 2012]. 
Free trade favors advanced industrial countries and 
multinational companies. Free trade is also often a disadvantage for developing countries that cannot compete 
in the advanced technological arena or protect domestic 
efforts to build up competitive technologies.
When considering a green transition, the WTO presents a barrier to an efficient promotion of general global welfare, when welfare is defined to include environmental stewardship and social equity. This leads to the 
proposition that WTO should be replaced by a new international trade organization. Such replacement would 
be responsible for promoting environmental sustainable 
trade with fair rules that permit developing nations to 
protect their emerging technological development for 

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

8

a sufficient period [Jackson, 2012; Meyer, 2012]. The alternative organization could also be responsible for the 
administration of a general tax on financial transactions 
(i.e. Tobin tax).
Similar changes of priorities could be introduced 
in transformed versions of IMF and the World Bank as 
well, where global equity and sustainability can play a 
more defining role.

Shale gas and oil from tar sand should remain underground
During the last five years, the US has pioneered the 
exploitation of shale gas at scale. This has changed the 
entire energy sector in the US, with the cost of gas and 
coal decreasing significantly. In tandem with this, the 
US is becoming less dependent on imported fossil fuels 
and is expected to become an exporter of liquid natural 
gas.
It is not surprising that the U.S. government is supporting energy supply security and the accompanying 
financial advantages. However, from an environmental 
sustainability point of view, such exploitation of new 
non-traditional fossil fuels is alarming. Recent analyses 
have shown that to keep the global warming below the 
critical two degrees, at least 50% of known fossil fuels 
should be kept underground [IEA, 2012]. This is an extremely difficult objective to meet in practice – to use an 
understatement. If a general exploitation of shale gas all 
over the world is being implemented, it may be impossible to prevent the global temperature to increase above 
two degrees.
This issue merits attention by the United Nations 
to adequately limit the shale gas progression. Similar 
considerations apply to the exploitation of oil from tar 
sands.

Population declines are good news – not a new problem
According to official UN estimates, the world population is on a trajectory with no adjustments to grow to 
around 9 billion by 2050. It turns out that with relatively 
small changes in number of births per woman, large 
changes are possible in the long term. Sustainability, 
including mitigation of climate change, would be a lot 
easier in a world with population numbers in the lower 
range of estimated  scenarios.
Population is slowly declining in many parts of the 
Western world. However, government policies in these 
densely populated, high CO2 emitting, countries often 
encourage higher birth rates rather than lower. This 
short-sighted policy is based on assumed problems when 
a decreasing number of young people in the work force 
have to support an increasing number of older people 
outside the active work force. This problem is, how
ever, relatively easy to overcome with long term planning and modifications in national policies. One of the 
consequences may be that future generations in OECD 
countries will not be much richer than the present generation, but this is in agreement with the basic concept 
of limits to growth.
Based on concerns for the consequences for human 
welfare and the environment, policies encouraging birth 
rates below 2.0 per woman could be promoted in poor 
as well as affluent countries. In the affluent countries, 
a population policy, which avoids economic and social 
incentives to increase birth rates, may be sufficient. In 
poorer countries, strategies like information campaigns 
about birth control for women may suffice, while in other cases, stronger means like economic incentives may 
be necessary. Population control is clearly a sensitive 
issue, and policies can conflict with basic ideas about 
personal freedom. They can also conflict with traditions 
and religious beliefs. Nevertheless, as indicated above, 
population policy should be part of any climate change 
policy.

4.2. National changes
New rules for democratic political work:
Democracy is being undermined by money power. 
This is a dangerous trend since democratic decisions 
should be based on informed arguments and not on 
narrow commercial interests. This complexity presents 
a serious barrier for a green transition. Here, radical reforms could include the following [Meyer, 2012]:
• It shall be forbidden by law for private persons, 
commercial companies and all kinds of organizations to offer economic support to political parties 
and politicians. The only exception is a modest fee 
for members of political parties e.g. of the order of 
40 € per year.
• Governments should support the work of political 
parties with a membership above a minimum 
level with basic economic funding, but most of the 
political work must rely on voluntary efforts from 
the members.
These restrictions may meet a lot of resistance from 
vested interests in the present capitalistic system, but solutions along these lines are necessary if real democracy 
is to survive.

Promotion of equity
It was emphasized in an earlier section that a high 
degree of economic equity is important for a balanced 
economy without growth. This may be achieved by 
strongly progressive taxes on income, capital and inheritance above a certain minimum value. Such a scheme 
has recently been supported by the French economist 
Thomas Piketty [Piketty, 2014]. 

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

Безопасность в техносфере, №1 (январь-февраль), 2015
9

The fear that highly salaried commercial managers will emigrate in large numbers with such taxation 
schemes seems highly exaggerated in the media. However, it would be relevant to combine such schemes 
with reintroduction of national control of capital 
movements.

Constraints from international agreements
Some relevant changes like national control of capital movements will, however, be in direct conflict with 
the EU constitution. Thus, it would not be possible for 
member states of EU to reintroduce national control 
with capital movements as the EU constitution emphasizes free capital movement. Such members would have 
to negotiate a different relationship with the EU to make 
this change. This subject will be further discussed in 
section 6.

5 . The Necessary Technologies Are There 
The only energy technologies deserving the name 
sustainable are based on renewable sources used for 
solar heating and cooling, photo-voltaics (PVs), wind 
power, wave power etc. A number of these technologies 
are already competitive with energy technologies using 
fossil fuels, especially when including externalities. In 
practice, these externalities are far from included in the 
cost of fossil fuels creating an unbalanced competition 
system. In contrast, the global state subsidies for fossil 
fuels are an order of magnitude larger than the support 
for renewables. The lack of political will and policies 
for a balanced market are delaying the necessary green 
transition.  
In order to promote renewable energy sources a 
number of government supported tariff systems have 
been introduced e.g. for wind power in Europe. The 
most efficient one has turned out to be the so-called 
feed-in tariff [Meyer, 2007].
The renewable energy sources are characterized by 
their intermittent nature which complicates establishing balance between supply and demand and requires 
new systems thinking. However, a   recent Danish energy project with the title “Coherent Energy and Environmental System Analysis” (CEESA) has documented 
that it is possible to phase out all fossil fuels in Denmark 
with known technologies before 2050. Compared to 
business as usual approach, this green scenario will have 
lower total costs over the period [CEESA, 2012].
The technological innovation includes production of 
higher energy efficiency motors, cars, trains, and household equipment like refrigerators and lighting [Nørgård 
et al., 2007]. One should be aware, however, that the full 
technical efficiency improvement is seldom evident in 
actual use when human beings are the main actors because of the rebound effect. When cars run longer per 

liter of fuel, many people will enjoy longer trips. When 
refrigerators are more energy efficient, people may buy 
larger refrigerators. When low energy lighting is introduced, people may use more lights and leave them on 
during the night. It is possible to reduce the consequences of this effect by changing life styles [Nørgård, 2009], 
but the effect should be taken into account when planning future energy systems.
The green transition involves new planning methodologies and new policy means as described in the reports from CEESA. Similar kinds of strategies may be 
used for a green transition in most industrial countries, 
but this will probably not gain momentum at scale  in 
time without establishing a lead group of motivated and 
technological advanced countries.

6 . How To Get Started?
To date, the global society has not been able to create sufficient international co-operation to avoid serious 
climatic consequences from man-made global warming. 
The good news is that alternative systems and policies 
using existing technologies could provide the necessary 
solutions, should the industrial nations decide to use 
these opportunities efficiently. Time is at a premium, 
however, and new types of international co-operation 
and economic systems are needed.
A possible lead group may be the Nordic countries. 
They have already initiated a number of concrete policies supporting sustainable development and a green 
transition. In addition, they have a long tradition of 
close co-operation and recent analyses point to many 
advantages of some kind of Nordic union [Wetterberg, 
2010]. It would require, however, that Denmark, Finland 
and Sweden obtain a more flexible type of EU membership in order to be free and independent of several constraints in the EU constitution [Meyer, 2012]. Alternatively, these three countries would have to give up their 
membership of the EU. The lead group should be open 
to other nations with the same goal. 
An important economic barrier is due to the present 
system of free capital movement which is part of the EU 
constitution. This undermines the stability of national 
economy and national control of such financial transactions should be reintroduced for the lead group.
Such changes would involve extensive formal negotiations between the lead group and the EU. As both parties have obvious advantages of continued co-operation 
there is no reason to believe that a satisfactory kind of 
co-operation could not be attained.
Without the formation of such a lead group of countries speeding up the green transition, this transition 
may not be realized in time to avoid a number of serious 
negative consequences of climate change.

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

10

7 . Conclusions
Limited progress toward a sustainable green transition is not tied to a scarcity of low-carbon technologies, 
but rather to the adherence to economic and political 
systems with short-sighted vested interests and inappropriate priorities. In spite of this, most scientific pa
pers on sustainable energy development are focusing on 
technological aspects, while neglecting the importance 
of societal policy changes. This is the reason that the 
present paper has focused on policy means for a green 
transition and given less attention to the sustainable energy technologies.

REFERENCES
1. CEESA Project (2012). Aalborg University, Denmark, 
www.ceesa.dk
2. Chang H-J (2010). 23 Things They Don’t Tell You About 
Capitalism. Penguin Books, London, UK.
3. Daly HE (2007). Ecological Economics and Sustainable 
Development. Edward Elgar Publishers, Mass., USA.
4. DEFRA (2008). Synthesis report on the findings from 
DEFRA’s pre-feasibility study into personal carbon trading. London: Department for Environment, Food and 
Rural Affairs, UK.
5. EU Commission (2008). Questions and Answers on the 
Commission’s proposal to revise the EU Emissions Trading System. MEMO/08/35, January 2008, Bruxelles, Belgium.
6. Fawcett T., Hvelplund F., Meyer N.I. (2009). Making it 
personal: Per capita carbon allowances? In Generating 
Electricity in a Carbon Constrained World, edited by 
Fereidoon P. Sioshansi, Elsevier Publishers, Holland.
7. IEA (2012). World Energy outlook 2012. Paris, France.
8. Jackson R. (2012). Occupy Wall Street. Chelsea Green 
Publishing, Vermont, USA.
9. Jackson T. (2005). Live better by consuming less? Is there 
a ‘double dividend’ in sustainable consumption? Journal 
of Industrial Ecology,9 (1–2), pp. 19–36.
10. Jackson T. (2009). Prosperity without Growth - Economics for a Finite Planet. Earth Scan, London, UK.
11. Keynes J.M. (1931). Essays in Persuasion. Milland and 
C°., London, UK.
12. Layard R. (2005). Happiness – Lessons from a New Science. Penguin Books, London, OK.
13. Meadows D.H., Meadows D.L., Randers J., Behrens W.W. 
(1972). The Limits to Growth. Potomac Associates Publishers, Washington DC, USA. 
14. Meadows D.H., Meadows D.L., Randers J. (1992). Beyond 
the Limits. Chelsea Green Publishing Co., Postmills, VT, 
USA.
15. Meadows D.H., Randers J., Meadows D.L. (2004). Limits 
to Growth. The 30 Year Update. Chelsea Green Publishing Co., Postmills, VT, USA.
16. Meyer N.I. (2007). Learning from Wind Energy Policy in 
the EU: Lessons from Denmark, Sweden and Spain. European Environment 17, pp. 347–362.
17. Meyer N.I. (2012). Enough is Enough – Stop the NonSustainable Development/ (in Danish)/ 17. 18. Tiderne 
Skifter Publishers, Copenhagen, Denmark. 

18. Meyer N.I., Petersen K.H., Sørensen V. (1981). Revolt from 
the Center. Marion Boyars Publishing, London, UK.
19. Meyer N.I., Hvelplund F., Nørgård J.S. (2011). Equity, 
Economic Growth and Lifestyle. In Energy Sustainability 
and the Environment: Technology, incentives, behavior, F. 
Sioshnsi (ed.). Elsevier, Netherlands.
20. Meyer N.I., Atkinson A. (2012). From Sustainability Science to Real-World Action: A Short History of the
21. Balaton Group.Solutions, 3, issue 5, September-October. 
2012, pp. 75–81.
22. Mill J.S. (1900). Principles of Political Economy (original 
version published in 1848). Revised edition, Vol. II, Colonial Press, New York, USA.
23. Nørgård J.S. (2006). Consumer efficiency in conflict with 
GDP growth. Ecological Economics, 57, pp. 15–29.
24. Nørgård J.S., Brange B., Guldbrandsen T., Karbo P. 
(2007). Turning the Appliance Market around towards 
A++. Proceedings of the European Council for an Energy Efficient Economy, Summer Study 2007, Stockholm: 
ECEEE, pp. 155–164.
25. Nørgård J.S. (2009). Avoiding Rebound through a Steady 
State Economy. In: Energy Efficiency and Sustainable 
Consumption. The Rebound Effect. Herring,H & Sorell, 
S. (eds.). Ch. 10, 204–223. Palgrave Macmillan, UK.
26. Nørgård J.S., Peet J., Ragnarsdóttir K.V. (2010). The history of The Limits to Growth. Solutions, vol. 1, No. 2, 
March-April, pp. 59–63. http://www.thesolutionsjournal.
com/node/569.
27. Piketty T. (2014). Capital in the Twenty-First Century. 
Belknap Press, US.
28. Stern N. (2007). The Economics of Climate Change: the 
Stern Review. Cambridge University Press, Cambridge, 
Storbritannien, 2007.
29. Turner G.M. (2009). A Comparison of the ‘Limits to 
Growth’ with 30 Years of Reality. Global Environmental 
Change (in press). http://www.csiro.au/files/files/plje.
pdf.
30. UNEP (2008). Reforming Energy Subsidies. United Nations Environment Programme. Division of Technology, 
Industry and Economics, New York, USA.
31. UN Population Division (2008). World Population Policies 2007. Department of Economic and Social Affairs. 
United Nations, New York, USA. http://www.un.org/esa/
population/publications/wpp2007/Publication_index.
htm.

Научные основы формирования техносферы
Scientific Bases of Technosphere Formation

Безопасность в техносфере, №1 (январь-февраль), 2015
11

Анализ глобального «зеленого» перехода 

Нильс И . Мейер, профессор Датского технического университета, Люнгбю-Торбек, Дания

Смягчению глобального потепления и переходу к «зеленому» и устойчивому миру противостоят ряд барьеров 
и дилемм. В настоящей работе предпринят анализ некоторых барьеров и дилемм с целью выделения эффективных стратегий и решений для достижения устойчивого развития.  В качестве примеров дилемм выделены 
следующие.
• На физически конечной планете существуют пределы экономического и материального роста. Однако в 
большинстве индустриально развитых стран в условиях кризиса правительства призывают к дальнейшему 
 росту. 
• Для ограничения роста требуется равенство, между тем в мире возрастает неравенство.
• Для того чтобы избежать необратимых изменений, необходимо, чтобы увеличение средней глобальной температуры не превысило 2°С. Между тем, наблюдаемые в настоящее время тенденции обусловливают увеличение 
на 4 и более градусов. 
• Для того чтобы избежать роста средней глобальной температуры более чем на 2°С, по крайней мере 50% разведанных запасов ископаемого топлива должны оставаться в земных недрах. Между тем ряд индустриально 
развитых стран стимулируют освоение новых ископаемых энергетических ресурсов, таких как сланцевый газ 
и нефть битуминозных песчаников.  
• Прекращение роста численности населения облегчает переход к устойчивому развитию. Однако большинство 
правительств развитых стран выражают крайнюю обеспокоенность в связи со снижением численности населения в своих странах.
• Центральной проблемой является тот факт, что «пределы роста» не воспринимаются серьезно финансовыми ведомствами индустриально развитых стран. Настоящая статья посвящена рассмотрению последствий 
«пределов роста» и поискам альтернативы «росту» для обеспечения занятости населения.

Ключевые слова: устойчивая энергетика, политические средства, «зеленый» переход.

32. Vuuren D.P. van, Faber A. (2009). Growing within Limits — A Report to the Global Assembly 2009 of the Club 
of Rome. The Netherlands Environmental Assessment 
Agency. Bilthoven, The Netherlands. http://www.rivm.
nl/bibliotheek/rapporten/500201001.pdf.

33. Wetterberg G. (2010). A Nordic Union/ (in Danish)/ published by the Nordic Council of Ministers,
34. Copenhagen, Denmark.
35. Wilkinson R., Pickett K. (2009). The Spirit Level. www.
equalitytrust.org.uk.

В России запущен первый завод по производству солнечных батарей

Завод полного цикла по производству солнечных 
модулей был запущен в эксплуатацию 17 февраля в 
Новочебоксарске (Чувашия). Производимые солнечные батареи можно будет использовать и в пасмурную погоду.
Суммарный объем инвестиций в создание производства и инженерной инфраструктуры составил 
20 млрд руб. Премьер-министр Дмитрий Медведев 
принял участие в запуске производства на заводе. Завод начнет  работать на полную мощность (97,5 МВт 
в год) во второй половине 2015 года. На предприятии 
используется тонкопленочная технология производ
ства солнечных модулей методом напыления нанослоев, позволяющая в 200 раз сократить использование 
кремния  — основного сырья в солнечной энергетике.
Солнечные модули, производимые в Новочебоксарске, способны вырабатывать электричество даже 
в пасмурную погоду, что особенно актуально для российских условий.
Солнечные панели, выпускаемые заводом, будут 
в основном использоваться для выработки электроэнергии для потребителей в отдаленных регионах в качестве объектов малой энергетики.
Источник: www. GreenEvolution.ru.