Апология математики
Покупка
Тематика:
Математика
Издательство:
Альпина нон-фикшн
Автор:
Успенский Владимир Андреевич
Год издания: 2017
Кол-во страниц: 622
Дополнительно
Доступ онлайн
В корзину
Математическая биология, математическая лингвистика, математическая экономика, математическая психология — математика занимает всё более важное место во всех областях знаний. А между тем у многих гуманитариев сохраняется страх перед этой «царицей наук», как называл её М. В. Ломоносов. Но математика — это отнюдь не только цифры, теоремы и вычисления. Известный математик, лингвист и популяризатор науки Владимир Андреевич Успенский сравнивает математику с искусством в её способе познания мира. Сборник статей «Апология математики» автор замышлял не для специалистов, а для «просвещенных дилетантов». Доступно и увлекательно он рассказывает о роли математики в современном мире, о её проблемах, о параллелях с гуманитарными науками. Новое издание книги расширено и дополнено публикациями последних лет.
Тематика:
ББК:
УДК:
ОКСО:
ГРНТИ:
Скопировать запись
Фрагмент текстового слоя документа размещен для индексирующих роботов.
Для полноценной работы с документом, пожалуйста, перейдите в
ридер.
АПОЛОГИЯ МАТЕМАТИКИ Москва 2017 Обновлённое и дополненное издание Владимир Андреевич УСПЕНСКИЙ
ISBN 978-5-91671-735-8 Все права защищены. Никакая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети интернет и в корпоративных сетях, а также запись в память ЭВМ для частного или публичного использования, без письменного разрешения владельца авторских прав. По вопросу организации доступа к электронной библиотеке издательства обращайтесь по адресу mylib@alpina.ru © Успенский В., 2017 © Издание на русском языке, оформление. ООО «Альпина нон-фикшн», 2017 УДК 001.92:51 ББК 22.1 У77 Редактор Маргарита Савина Успенский В. А. У77 Апология математики: [сборник статей] / Владимир Андреевич Успенский. — М. : Альпина нон-фикшн, 2017. — 622 с. ISBN 978-5-91671-735-8 Математическая биология, математическая лингвистика, математическая экономика, математическая психология — математика занимает всё более важное место во всех областях знаний. А между тем у многих гуманитариев сохраняется страх перед этой «царицей наук», как называл её М. В. Ломоносов. Но математика — это отнюдь не только цифры, теоремы и вычисления. Известный математик, лингвист и популяризатор науки Владимир Андреевич Успенский сравнивает математику с искусством в её способе познания мира. Сборник статей «Апология математики» автор замышлял не для специалистов, а для «просвещенных дилетантов». Доступно и увлекательно он рассказывает о роли математики в современном мире, о её проблемах, о параллелях с гуманитарными науками. Новое издание книги расширено и дополнено публикациями последних лет. УДК 001.92:51 ББК 22.1
Содержание Предисловие ко второму изданию ...............................................7 Предисловие к первому изданию ..................................................9 Из предисловия к сборнику переводов «Математика в современном мире» ...........................................13 Математическое и гуманитарное: преодоление барьера .......................................................................22 Апология математики, или О математике как части духовной культуры .......................................................73 Глава 1 Ватсон против Холмса...................................................................73 Глава 2 Теорема Пифагора и теорема Ферма ........................................83 Глава 3 Проблемы нерешённые и проблемы нерешимые ...............107 Глава 4 Длины и числа.............................................................................. 136 Глава 5 Квадратура круга ........................................................................ 141 Глава 6 Массовые задачи и алгоритмы ................................................ 149 Глава 7 Парадокс Галилея, эффект Кортасара и понятие количества ................................................................ 156 Глава 8 Параллельные прямые в мифологии, реальности и математике ......................................................... 178
СОДЕРЖАНИЕ Глава 9 Проблема на миллион долларов ............................................. 205 Глава 10 От метрической геометрии к геометрии положения ....... 213 Глава 11 От геометрии положения к топологии ................................. 246 Односвязность ........................................................................ 247 Многообразия ........................................................................ 249 Гомеоморфизмы, гомеоморфия, топология .................. 259 Изотопия .................................................................................. 269 Так что же такое гомеоморфия? ....................................... 272 Ещё о многообразиях ........................................................... 277 Глава 12 Какой м оже т оказаться наша Вселенная? ......................... 282 Приложение к главе 1 Мнение читателя ......................................................................... 301 Приложение к главе 3 К истории проблемы Гольдбаха .............................................. 304 Список литературы к приложению к главе 3 ................ 322 О понятиях ‘множество’, ‛кортеж’, ‛соответствие’, ‛функция’, ‛отношение’ ................................................................. 324 Множество ................................................................................... 324 Кортеж ............................................................................................ 327 Соответствие ................................................................................ 329 Функция ......................................................................................... 331 Отношение .................................................................................... 338 Из книги «Что такое аксиоматический метод?» ................. 340 §1. Что такое аксиомы? ............................................................. 340 §2. Аксиомы Евклида ................................................................. 343 §3. Современный подход к аксиоматизации геометрии: аксиоматика Гильберта ...................................... 350
СОДЕРЖАНИЕ §15. Аксиомы метрики и аксиомы меры .............................. 356 Заключительные замечания .................................................... 362 Простейшие примеры математических доказательств ... 364 §1. Математика и доказательства .......................................... 364 §2. О точности и однозначности математических терминов ....................................................................................... 370 §3. Доказательства методом перебора ...................................374 §4. Косвенные доказательства существования. Принцип Дирихле ....................................................................... 378 §5. Доказательства от противного ......................................... 381 §6. Принципы наибольшего и наименьшего числа и метод бесконечного спуска ................................................... 384 §7. Индукция ................................................................................ 394 §8. Алфавиты и буквы. Слова и строки. Взаимно однозначные соответствия и мощность. Диагональный метод.................................................................. 409 §9. Задачи из элементарной комбинаторики ......................415 §10. Счётные и несчётные множества ...................................419 §11. Представление о математических доказательствах меняется со временем ............................... 430 §12. Два аксиоматических метода — неформальный и формальный .............................................................................. 437 §13. Теорема Гёделя .................................................................... 447 Семь размышлений на темы философии математики .... 450 1. Действительно ли в математике всё определяется и доказывается? ........................................................................... 450 2. Можно ли определить понятие натурального числа? .....455 3. Можно ли определить Натуральный Ряд (с прописной буквы)? ................................................................ 459 4. Можно ли аксиоматически определить понятие натурального ряда (со строчной буквы)? ............................ 463 5. «Можно ли доказать, что Великую теорему Ферма нельзя ни доказать, ни опровергнуть?» ................................ 484
СОДЕРЖАНИЕ 6. Что такое доказательство? ................................................... 496 7. Можно ли сделать математику понятной? ...................... 517 Литература .................................................................................... 521 Приложение. Проблема континуума и языки второго порядка .......................................................................................... 524 Математика языка .......................................................................... 528 О «Лингвистических задачах» А. А. Зализняка .................... 537 Опыт применения математики к филологии. Анализ фрагментов текстов Гоголя и Достоевского ........................ 543 А. Н. Колмогоров: статья для «Философской энциклопедии» .............................................................................. 568 Сочинения Колмогорова, имеющие философскую составляющую ..............................................................................574 Приложение I. А. Н. Колмогоров. Современные споры о природе математики .............................................. 577 Приложение II. П. К. Рашевский. О догмате натурального ряда .................................................................... 607 Сведения о предыдущих публикациях статей ......................617
Предисловие ко второму изданию Любезного читателя, купившего, укравшего, одолжившего, взявшего в библиотеке или иным способом получившего в постоянное или временное владение настоящую книгу, прошу прочесть предисловие к первому изданию. Оно идёт сразу вслед за этим предисловием. Но ведь читатель сначала должен решить, стоит ли ему хотя бы фрагментарно читать настоящую книгу. Поэтому со- общаю, на кого она рассчитана. Настоящая книга рассчи- тана на образованных дилетантов. Приятно отметить, что ошибку в одном из чертежей пер- вого тиража первого издания указал мне вовсе не матема- тик, а лингвист доктор филологических наук Анатолий Фё- дорович Журавлёв. Книга не вышла бы в свет, если бы этого не пожелало из- дательство «Альпина нон-фикшн». Приношу глубокую при- знательность этому издательству в лице тех, чьё содействие я ощутил. Это генеральный директор Павел Дмитриевич Подко- сов. Именно он позвонил мне и предложил переиздать «Апологию математики». Он пошёл мне навстречу в важ- ном для меня вопросе: сделать исключение из стандартов издательства и использовать букву ё с двумя диакритиче- скими точками. Личное общение с ним было приятным и полезным.
ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ Это менеджер проектов Александра Михайловна Шува- лова. С ней я вёл постоянную переписку. Она взяла на себя труд быть посредником между автором и генеральным ди- ректором, а также между автором и редактором книги. Это редактор книги Маргарита Евгеньевна Савина. Не бу- дучи математиком, она провела героическую работу по ре- дактированию книги хотя и популярной, но всё же матема- тической. Более того, она поправила некоторые формулы в этой книге.
Предисловие к первому изданию Редкий читатель добирается до середины предисловия, поэ- тому главное следует сказать в начале. В тексте этого сборника наряду со всем знакомыми кавычками-ёлочками и кавычка- ми-лапками применяются одинарные кавычки. Они называ- ются также марровскими. Закрывающая марровская кавычка имеет вид запятой, поднятой на верхнюю линию шрифта (ино- гда опрокинутой «вниз головой» и одновременно зеркально отражённой). Открывающая марровская кавычка также вы- глядит как поднятая запятая, но непременно либо отражён- ная, либо опрокинутая. Марровские кавычки применяются для обозначений понятий и смыслов, то есть тех абстрактных сущностей, которые есть лишь в нашем сознании. Надеюсь, что всё станет ясным из двух приводимых ниже примеров. 1. Фразу Слово «число» выражает понятие числа можно записать так: Слово «число» выражает понятие ‘число’. 2. Фразу Смысл предложения «Петя съел яблоко» состоит в том, что Петя съел яблоко можно записать так: Смысл предложения «Петя съел яблоко» есть ‘Петя съел яблоко’. Пропуски в цитатах обозначены многоточием, заключён- ным в квадратные скобки […], чтобы читатель не путал его с многоточием, употреблённым автором цитаты. В сборник вошли девять текстов, написанных автором в разное время, с 1965 по 2008 г. Все они были в своё время
ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ опубликованы1. Однако при подготовке сборника тексты под- вергались переработке, иногда минимальной, а иногда до- вольно существенной. Наилучший способ получить пред- ставление об их тематике — заглянуть в содержание; все они в той или иной степени относятся (или хотя бы примыкают) к не имеющей чётких границ области знания, которую одни именуют философией математики, другие — основаниями математики, третьи — ещё как-нибудь. К этой же области принадлежат работы А. Н. Колмогорова и П. К. Рашевского, включённые в сборник в качестве приложений I и II. Автор имел честь быть учеником А. Н. Колмогорова и слушать лек- ции П. К. Рашевского во время учёбы в Московском универ- ситете. Сочиняя включённые в сборник тексты, автор если кого и видел в качестве читателя, то отнюдь не профессиональ- ного математика. Уж скорее (в большинстве случаев) гумани- тария. Правильнее всего будет сказать, что книга рассчитана на образованного дилетанта. Приходилось поэтому выбирать между понятностью и точностью. Предпочтение отдавалось понятности. (За неточности прошу прощения у коллег-мате- матиков. Достигнуть абсолютной точности всё равно невоз- можно. Как, впрочем, и абсолютной понятности — вообще чего-либо абсолютного.) Тем не менее читателю-нематема- тику отдельные места могут показаться трудными для вос- приятия. Возможно также, что некоторую сообщаемую ав- тором информацию он сочтёт избыточной, утяжеляющей чтение. Что ж, такие места автор советует пропускать, как и всё, что читатель посчитает неинтересным. Должен также заметить, что отдельные сюжеты и даже рисунки повторяются в тексте сборника (но не в пределах одной и той же статьи). Вызвано это стремлением к тому, 1 Сведения о предыдущих публикациях приведены в конце настоя- щего издания на с. 617.
ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ чтобы каждую статью можно было читать как отдельное про- изведение, не обращаясь к другим статьям сборника. В боль- шинстве случаев независимо друг от друга можно читать и разделы статей. Хотел бы выразить глубокую благодарность заместителю главного редактора издательства «Амфора» Елене Сергеевне Суворовой, которая способствовала выходу в свет этой книги, и Татьяне Германовне Филатовой, которая эту книгу редак- тировала. Работать с ними было приятно.
Из предисловия к сборнику переводов... «Математика в современном мире» Современный мир неожиданно обнаружил, что математика уверенно расположилась в самых разных его частях и угол- ках1. Несмотря на то что вторжение математики продолжа- ется — и со всё возрастающей интенсивностью, — удивление по этому поводу скорее даже убывает: математическая экс- пансия стала привычной. Сейчас уже все смирились со слово- сочетаниями «математическая биология», «математическая лингвистика», «математическая экономика», «математиче- ская психология»; и какую дисциплину ни возьми, вряд ли кому-нибудь покажется невозможным присоединение к её наименованию эпитета «математический». Распространение математики вширь сопровождается её проникновением вглубь; математика занимает теперь вид- ное положение в жизни общества. Изменилось и традицион- ное представление о математиках: место паганелеобразных чудаков заняли молодые люди в ковбойках, увлекающиеся лыжным спортом. Всё большее число родителей желает опре- делить своих детей в школы с математическим уклоном: ма- тематика стала модной профессией. Исчерпывающие причины такого стремительного (в те- чение последних 10–15 лет) изменения роли математики 1 Прошу читателя иметь в виду, что этот текст впервые был опубли- кован в 1967 г. К этому периоду и следует относить слово «современный».
ИЗ ПРЕДИСЛОВИЯ К СБОРНИКУ ПЕРЕВОДОВ... в современном мире, конечно, легче будет установить будущим историкам науки, чем нам, наблюдающим его сегодня. Однако уже сейчас можно, пожалуй, сказать, что основная причина заключается не только и не столько в конкретных успехах последних лет, сколько в осознании необъятных возможностей применения математики и появлении возросших потребностей в использовании этих возможностей. Тем не менее повсеместное проникновение математики некоторым кажется загадочным, а некоторым — подозрительным. В самом деле, не вызывает сомнений право на всеобщее признание, скажем, физики или химии: физика открывает нам новые мощные источники энергии и новые средства быстрой связи, химия создаёт искусственные ткани, а сейчас покушается и на создание искусственной пищи. (Сказанное не претендует, разумеется, на какое-либо определение и тем более ограничение роли физики и химии.) Неудивительно, что эти науки, помогающие человеку в его извечных поисках еды, одежды, источников силы и способов связи, прочно вошли в нашу жизнь, заняв в ней почётное место. А ведь ма- тематика проникла даже в науки, традиционно считающиеся гуманитарными. И хотя, например, в языкознании пользу- ются физическими приборами для исследования устной речи, никто не говорит о «физической лингвистике». Так что же даёт людям математика, теоретическая наука, которая не открывает ни новых веществ, как химия, ни но- вых средств перемещения предметов или передачи сигналов, как физика? И почему появление в какой-либо отрасли науки математических методов исследования или хотя бы просто математического осмысления соответствующей сис темы по- нятий и фактов всегда означает достижение этой отраслью определённого уровня зрелости и начало нового этапа в её дальнейшем развитии? Наиболее распространённый в недав- нем прошлом ответ состоял в том, что математика умеет хо- рошо вычислять и тем самым позволяет находить в нужных
Доступ онлайн
В корзину