Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Производство гибридных интегральных схем

Покупка
Основная коллекция
Артикул: 744487.01.99
Рассмотрены особенности изготовления гибридных интегральных схем: диэлектрическая подложка на основе низкотемпературной керамики, подвесные активные элементы, толстоплёночные пассивные элементы. Уделено внимание технологии и компоновке элементов. Приводятся конкретные примеры из производства гибридных интегральных схем. Изложены технические приёмы и оборудование монтажа навесных элементов. Для студентов, обучающихся по специальности 11.00.00 «Электроника, радиотехника и системы связи», а также инженеров, занятых проектированием и обслуживанием электронных приборов.
Родионов, Ю. А. Производство гибридных интегральных схем : учебное пособие / Ю. А. Родионов. - Москва ; Вологда : Инфра-Инженерия, 2020. - 300 с. - ISBN 978-5-9729-0460-0. - Текст : электронный. - URL: https://znanium.com/catalog/product/1168533 (дата обращения: 27.04.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.

Ю. А. Родионов










ПРОИЗВОДСТВО ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ

Учебное пособие













Москва Вологда «Инфра-Инженерия» 2020

УДК 621.382(076)
ББК 32.844.1я73
     Р60


Рецензенты:
доктор физико-математических наук, профессор, главный научный сотрудник кафедры физики твёрдого тела Белорусского государственного университета Квасов Н. Т;
доктор технических наук, профессор кафедры микро- и нанотехники Белорусского национального университета Сычик В. А; кандидат технических наук, заместитель главного инженера по серийному производству ОАО «„Интеграл” - управляющая компания холдинга „Интеграл”» Ковальчук Н. С





     Родионов, Ю. А.
Р60 Производство гибридных интегральных схем : учебное пособие / Ю. А. Родионов. - Москва ; Вологда : Инфра-Инженерия, 2020. - 300 с. : ил., табл.
         ISBN 978-5-9729-0460-0



    Рассмотрены особенности изготовления гибридных интегральных схем: диэлектрическая подложка на основе низкотемпературной керамики, подвесные активные элементы, толстоплёночные пассивные элементы. Уделено внимание технологии и компоновке элементов. Приводятся конкретные примеры из производства гибридных интегральных схем. Изложены технические приёмы и оборудование монтажа навесных элементов.
     Для студентов, обучающихся по специальности 11.00.00 «Электроника, радиотехника и системы связи», а также инженеров, занятых проектированием и обслуживанием электронных приборов.




                                                      УДК 621.382(076)
                                                      ББК32.844.1я73




ISBN 978-5-9729-0460-0     © Родионов Ю. А., 2020
                            © Издательство «Инфра-Инженерия», 2020
                            © Оформление. Издательство «Инфра-Инженерия», 2020

СОДЕРЖАНИЕ


ВВЕДЕНИЕ........................................................5

ГЛАВА 1. СПЕЦИФИКА ПРОИЗВОДСТВА ГИС.............................8
1.1. Подложка и компоновка многослойных структур................8

                                          ..
ГЛАВА 2. МЕТОДЫ СОЗДАНИЯ ТОНКИХ ПЛЕНОК.........................23
   2.1. Подготовка поверхности к нанесению тонких плёнок.......23
   2.2. Вакуумное нанесение тонких плёнок......................44
   2.3. Магнетронное нанесение.................................54
   2.4. Электрохимическое нанесение............................70
   2.5. Осаждение из парогазовой фазы.........................100
   2.6. Контрольные точки методов создания тонких плёнок......112
      2.6.1. Зондовые методы измерений........................112
      2.6.2. Тестовый контроль................................115
      2.6.3. Оптическая микроскопия...........................122
      2.6.4. Просвечивающая электронная микроскопия...........128
      2.6.5. Метод реплик.....................................141
      2.6.6. Растровая электронная микроскопия................142
      2.6.7. Оже-электронная спектроскопия....................145
      2.6.8. Вторичная ионно-масс спектроскопия...............147

ГЛАВА 3. МЕТОДЫ ПОЛУЧЕНИЯ КОНФИГУРАЦИЙ ПЛЕНОЧНЫХ СТРУКТУР......................................................149
   3.1. Метод съёмной маски...................................149
   3.2. Метод контактной маски................................152
   3.3. Фотолитография........................................156
   3.4. Электронно-лучеваялитография..........................186
   3.5. Рентгеновская литография..............................195

ГЛАВА 4. ПРОЕКТИРОВАНИЕ И РАСЧЕТ ТОПОЛОГИЧЕСКОЙ СТРУКТУРЫ ГИС.................................................199
   4.1. Необходиме данные для проектирования и расчёта топологической структуры ГИС...................................................200
   4.2. Основные принципы проектирования топологической структуры ГИС... 204
      4.2.1. Выбор оптимального квадрата резистивной плёнки........204
      4.2.2. Выбор удельной ёмкости диэлектрической плёнки конденсатора... 205
      4.2.3. Определение необходимой площади под плёнку резисторов.205
      4.2.4. Определение необходимой площади подложки для размещения топологической структуры микросхемы.....................205

3

      4.2.5. Определение степени интеграции принципиальной электрической схемы устройства.......................................206
   4.3. Компоновка топологической структуры ГИС..............207

            ..
ГЛАВА 5. ПЛЕНОЧНЫЕ ЭЛЕМЕНТЫ ГИС..............................210
   5.1. Плёночные интегральные резисторы.....................210
      5.1.1. Фрагменты расчёта тонкоплёночных резисторов.....216
      5.1.2. Плёночные переходные компоненты и межсоединения.218
      5.1.3. Создание точных плёночных резисторов............220
      5.1.4. Оценка сопротивления и индуктивности плёночных проводников............................................223
      5.1.5. Частотные свойтва плёночных резисторов..........223
   5.2. Тонкоплёночные конденсаторы..........................224
      5.2.1. Расчёт тонкоплёночных конденсаторов без подстроечных секций................................................232
      5.2.2. Расчёт гребенчатых конденсаторов................234
   5.3. Плёночные индуктивности..............................235

ГЛАВА 6. МНОГОСЛОЙНЫЕ СВЧ ГИС НА КНТО........................238
   6.1. Элементная база многослойных ГИС на КНТО.............238
   6.2. Средства проектирования многослойных СВЧ ГИС на КНТО.248
   6.3. Реализация пассивных СВЧ устройств в виде интегральных схем на КНТО...................................................249

ГЛАВА 7. МОНТАЖ НАВЕСНЫХ ЭЛЕМЕНТОВ...........................266
   7.1. Сварка косвенным импульсным нагревом.................269
   7.2. Контактная сварка....................................275
   7.3. Технология контактной сварки.........................277
   7.4. Инструмент контактной сварки.........................278
   7.5. Оборудование для контактной сварки...................279

ГЛАВА 8. ЗАЩИТА ГИС ОТ НАПРАВЛЕННОГО ДЕЙСТВИЯ СВЧ
ИЗЛУЧЕНИЯ....................................................281
   8.1. Варианты защиты ГИС от СВЧ излучений.................284

4

ВВЕДЕНИЕ


     Интегральные микросхемы подразделяются на полупроводниковые, плёночные и гибридные. Однако это чисто формальная классификация, поскольку полупроводниковые схемы используют поверхностную коммутацию (металлизацию) и пассивацию, выполненные по тонкоплёночной технологии. С другой стороны в промышленном производстве практически не существует чисто плёночных микросхем, поскольку до сих пор не разработаны надёжные плёночные диоды и транзисторы. В гибридных схемах пассивные (резистор, ёмкость, индуктивность) элементы и разводка выполняются по тонкоплёночнай (толщиною до 1 мкм) и толстоплёночной (толщиною до сотен мкм) технологии. Активные элементы (диоды и транзисторы) навесные, а при необходимости и пассивные элементы используются навесными в случае больших номиналов. В полупроводниковых схемах используется монокристаллическая подложка (в основом кремниевая, реже германиевая), а в гибридных - разнообразные диэлектрические (керамика, ситалл, пластмассы, окисленный металл).
Различия в интегральных схемах
     Пленочная ИС - все элементы и межэлементные соединения плёночные (тонкопленочные - менее 1 мкм, толстопленочные - свыше 1 мкм.
     Гибридная ИС - пассивные элементы (R, L, С) - плёночные, активные (бес-корпусные диоды, транзисторы, МЭМС и кристаллы микросхем) - навесные.
     Полупроводниковая ИС - все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника.
     Совмещенная (смешанная) ИС - кроме полупроводникового кристалла, содержит тонкоплёночные и толстоплёночные пассивные элементы, размещённые на поверхности кристалла.
     По функциональному назначения ИС делятся на аналоговые, цифровые и аналого-цифровые ИС.
     В данном пособии рассматриваются только гибридные интегральные схемы. Производство любого изделия базируется на трёх факторах: проектирование, технология и организация производственного процесса, основанная на технико-экономических показателях. Поэтому в данном пособии особое внимание мы уделим не только физике работы процесса, но также подробностям технологии и проектирования ГИС. Для этой цели в пособии приводятся рекомендации и методики проектирования, проверенные в реальном проышленном производстве. Это позволит изучившим данное пособие быстрее адаптироваться в условиях работы на предприятиях.
     В настоящее время ГИСы переживают второе рождение. Это во многом связано с прогрессом нового вида вооружения - средств радиоэлектронной борьбы (РЭБ), мощное направленное СВЧ воздействие которых эффективно выводит из

5

строя электронику, которая в основном базируется на GPS - программах и полупроводниковых микросхемах (биполярных и КМОП), неустойчивых к воздействию направленного СВЧ излучения. В этом случае гибридные схемы намного надёжнее.
     На рис. В1 приведена упрощённая версия полупроводниковой микросхемы, на рис. В2 - тонкоплёночной гибридной, ВЗ - толстоплёночной гибридной интегральной схемы, В4 - многочиповый модуль, В5 - процессор на основе МСМ-С технологии.


Рис. В1. Упрощённая структура полупроводниковой ИМС

Проводник

Транзистор

Конденсатор

Резистор

Диэлектрическая подложка

Рис. В2. Упрощённая структура тонкоплёночной ГИС

Рис. ВЗ. Толстоплёночная гибридная интегральная схема

6

Принципиальные преимущества ГИС:
      -  лучшая защита от электромагнитных и радиационных излучений;
      -  повышенная стойкость к механическим, климатическим и специальным воздействиям;
      -  экономическая целесообразность при мелкосерийном производстве;
      -  гибкость технологии;
      -  относительно невысокая стоимость оборудования;
      -  миниатюрное исполнение;
      -  температура рабочая - до 500 °C;
      -  мощность от нескольких Вт. до нескольких кВт;
      -  диапазон рабочих частот от единиц МГц до 40 ГГц;
      -  возможность создание многочиповых модулей (рис. ВЗ, В4, В5).


Рис. В4. Многочиповый модуль

• Больше чипов находятся на одной подложке
• Интегрированная проводка
• Многослойная подложка
• Встроенные пассивные компоненты

Типы:
• MCM-L: (ламинирование), технология печатной платы
• МСМ-С: (керамика), толстоплёночные технологии
• MCM-D: (осаждение), тонкоплёночные технологии

Рис. В5. IBM Power5 - процессор на основе МСМ-С технологии с размерами модулей 95x95 мм

7

     ГЛАВА 1. СПЕЦИФИКА ПРОИЗВОДСТВА ГИС

     Гибридные интегральные схемы во многом используют элементы, принципы проектирования и технологии изготовления полупроводниковых интегральных микросхем ИМС (химическую обработку плёночных технологических слоёв, тонкоплёночные резисторы и конденсаторы, фотолитографические принципы формирования топологии, ....). Однако с целью повышения эксплуатационной надёжности и помехоустойчивости элементов и схемы в целом, возможности экономической целесообразности малосерийного производства они используют также и толстоплёночные пассивные элементы, включая индуктивность и дискретные навесные активные элементы (диоды и транзисторы). Такое сочетание приводит к специфичным техпроцессам, компоновкам и методикам проектирования и делает такую продукцию незаменимой в системах вооружения и высокочастотной связи.
Основная терминология
     Подложка - диэлектрическая плата, предназначенная для нанесения на неё пленочных элементов
     Контактная площадка - электропроводящая площадка на подложке для подсоединения навесных элементов, внешних выводов и контроля параметров пленочных элементов.
     Слой - часть пленочной микросхемы, выполненная за одну технологическую операцию с применением одного трафарета (резистивный слой, проводящий слой, диэлектрический слой, защитный слой и т. д.).
     Топология - взаимное расположение и геометрическая форма пленочных элементов микросхемы.
     Защита - предохранение от воздействий внешней среды на электрические параметров гибридных микросхем.

1.1. Подложка и компоновка многослойных структур

Основные требования к подложкам:
      -  высокая механическую прочность при небольших толщинах;
      -  высокое удельное электрическое сопротивление и малые потери (tg б) на высоких частотах и при высоких температурах;
      -  химическая инертность к осаждаемым веществам
      -  минимальное газовыделение в глубоком вакууме;
      -  физическая и химическая стойкость при нагревании до 400-500 °С;
      -  (ЛКТР), близкий к ЛКТР осаждаемых пленок;
      -  высокая адгезия к осаждаемым пленкам;
      -  класс поверхностной обработки -14.

8

Таблица 1.1
Характеристики подложек

                          Удельное    Диэлектрическая
 Материал диэлектрика  сопротивление,   постоянная   
                            Омсм                     
    Боросиликатное          107             4,6      
        Стекло                                       
Алюмооксидная керамика                               
         типа               1014           10,8      
      «Поликор»                                      
    Алюмооксидная           1014            9,1      
       керамика                                      
     (96 % Ah Оз)           1016            6,6      
   Кварцевое стекло         1016             4       
       Ситаллы           1013-1014          6,5      
     Лейкосапфир            ю11             8,6      
                                        Коэффициент
  Диэлектрические    Т еплопроводность,  линейного 
       потери          кал/см • с °C    расширения,
 на частоте 10б Гц                        10 6/°C  
6,2-10 -3                  0,0027          3,25    
2 ■ 10 ~4                0,075-0,08       7,5-7,8  
2,7 ■ 10 -3              0,03-0,06          6,4    
3 ■ 10 4                  0,25-0,5          7-9    
3,8 ■ 10 4 2 ■ 10 ~5       0,0036        0,56-0,6  
10 - 3-6 ■ 10 ~3        0,005-0,009          5     
2 ■ 10 4                   0,0055            5     


Таблица1.2
Промышленные материалы подложек

                                Толщина                                        Характеристики                                         Совместимость
   Материал     Химический       после              Электрические                      Тепловые                         Механические  с матери алом
                  состав        обжига,            ег         tg 8 х 101   ЛКТР (°C1) х ю6 Т еплопроводность,  Модуль     Прочность    проводников 
                                  мкм                                                            Вт/(м)       Юнга, ГПа на изгиб, МПа              
                                                              Материалы КИТО                                                                        
                                                                 DuPontt                                                                            
                                                              www.dupont.com                                                                        
                 76 % Al,                                                                                                                          
GreenTape 943    9 % Ca,       107; 217      7,5 на 10 ГГц  1,0 на 10 ГГц        6,0              4,4            149    230             Pd/Ag, Ag  
                 7,5 % Ti                                                                                                                          
                 42 %A1,     36; 96; 130;                                                                                                          
GreenTape 951    47 % Si,         216        7,8 на 10 ГГц  1,5 на 10 ГГц        5,8       3,0                   152    320             Pd/Ag, Ag  
                  7 % Ca                                                                                                                           
                                                                 Heraeus                                                                            
                                                             www.heraeus.com                                                                        
                 52 % Al,                                                                                                                          
Heratape CT2000  28 % Si,  20,3; 40,6; 78,7; 9,1 на 2,5 ГГц 2,0 на 2.5 ГГц       5,6       3,0                    -     310           Au, Ag, Ag/Pd
                8,5 % Ca,    104,1; 203,2                                                                                                          
                  6 % Ti                                                                                                                           
Heralock HL2000                   92         7,3 на 2,5 ГГц 2,6 на 2,5 ГГц       6,1       3,0                    -     200           Au, Ag, Ag/Pd


Продолжение таблицы 1.2

                          Толщина                                        Характеристики                                         Совместимость
 Материал  Химический      после             Электрические                      Тепловые                          Механические  с материалом 
             состав       обжига,           ег        tg 8 х К)1   ЛКТР (°C ') х 106 Т еплопроводность,  Модуль     Прочность    проводников 
                            мкм                                                            Вт/(м)       Юнга, ГПа на изгиб, МПа              
                                                               Ferro                                                                          
                                                           www.ferro.com                                                                      
Ferro А6-М  48 % Si,      93; 185      5,9 на 10 ГГц 2,0 на 10 ГГц        7,0               2,0         92        170              Au, Ag    
            47 % Ca                                                                                                                          
Ferro A6-S                98; 191      6,0 на 10 ГГц 2,0 на 10 ГГц        8,0               2,0         82        160              Au, Ag    
                                                              Kyocera                                                                         
                                                          www.kyocera.com                                                                     
  GL550        -             -         5,6 на 2 ГГц  0,9 на 2 ГГц         5,9               2,0         ПО        200                Ag      
  GL560        -             -         6,0 на 2 ГГц  1,7 на 2 ГГц         7,9               1,5         91        200                Ag      
  GL660        -             -         9,6 на 2 ГГц  1,7 на 2 ГГц        6.,2               1,2         100       200                Ag      
                                                               Nikko                                                                          
                                                          www.nikkos.co.ip                                                                    
   AG3     50 % Al,   40; 80; 100; 140 7,1 на 1 МГц  3,0 на 1 МГц         5,5                -          80              -          Au, Ag    
            50 % Si                                                                                                                          
                                                                TDK                                                                           
                                                          www.tdkltcc.com                                                                     
   S39         -         20; 40; 80    7,5 на 2 ГГц  2,9 на 2 ГГц         6,3               2,9         ПО                  245      Ag      
   T50         -           40; 80      11,7 на 2 ГГц 3,3 на 2 ГГц         6,4               2,4         100                 200      Ag      


Продолжение таблицы 1.2

                              Толщина                                     Характеристики                                        Совместимость
  Материал    Химический       после           Электрические                     Тепловые                         Механические  с материалом 
                состав        обжига,         ег       tg 8 х К)1   ЛКТР (°C ') х 106 Теплопроводность,  Модуль     Прочность    проводников 
                                мкм                                                        Вт/(м)       Юнга, ГПа на изгиб, МПа              
                                                               Murata                                                                         
                                                           www.murata.com                                                                     
               СаО-АПОз-   50; 65; 100;                                                                                                      
     LR       -S1O2-B2O3-  130; 160; 200 7,7 на 1 МГц 5,0 на 10 ГГц        5,5               2,5            -               270      Ag      
                -A12O3                                                                                                                       
               СаО-АПОз-                                                                                                                     
     LA         -SiO2-        25; 50     8,8 на 1 МГц 4,0 на 6 ГГц         7,2               3,5            -               300      Ag      
              -B2O3+AI2O3                                                                                                                    
                                                              CeramTec                                                                        
                                                          www.ceramtec.de                                                                     
CeramTape GC    A12O3 +         50       7,9 на 1 МГц 2,0 на 1 МГц         5,3               2,2            -     170                Ag      
             +Ca[A12Si2O8]                                                                                                                   
                                                         ESL ElectroScience                                                                   
                                                       www.electroscience.com                                                                 
   41110           -         100; 130    4,5 на 1 МГц 4,0 на 1 МГц         6,4               3,0            -           -         Ag, Ag/Pd  
   41060           -         100; 130    16 на 1 МГц  2,0 на 1 МГц        7,55                -             -           -            Ag