Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Безопасность в техносфере, 2014, №6 (51)

Бесплатно
Основная коллекция
Количество статей: 13
Артикул: 433931.0056.99
Безопасность в техносфере, 2014, №6 (51)-М.:НИЦ ИНФРА-М,2014.-88 с.[Электронный ресурс]. - Текст : электронный. - URL: https://znanium.com/catalog/product/501724 (дата обращения: 02.05.2024)
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
На правах рекламы

№ 6 (51)/2014 
ноябрь–декабрь

НАУЧНО-МЕТОДИЧЕСКИЙ И ИНФОРМАЦИОННЫЙ ЖУРНАЛ
SCIENTIFIC, METHODICAL AND INFORMATION MAGAZINE

В номере 
In this issue

Экологическая безопасность

Ecological safEty

A. AtKisson, A.S. Makarova, N.P. Tarasova, S.V. Makarov
A. Аткиссон, А.С. Макарова, Н.П. Тарасова, С.В. Макаров
Sustainable Management of Chemicals in Russia — Improving the Use  
of Chemicals and Minimizing the Danger for Nature and Human Beings  .  .  .  .  .3
Устойчивое обращение химических веществ в России — увеличение 
использования при снижении уровня воздействия

М.С. Хвостова
M.S. Khvostova
Радиоэкологические проблемы  реабилитации арктических морей  
России   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Radio Ecological Problems of Russia’s Arctic Seas Environmental Remediation

В.А. Марков, В.В. Маркова, В.М. Сивачёв, С.М. Сивачёв
V.A. Markov, V.V. Markova, V.M. Sivachev, S.M. Sivachev 
Оптимизация состава смесевого биотоплива  
для дизельных двигателей  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Optimization of Mixed Biofuels Composition for Diesel Engines

транспортная безопасность

transport safEty

А.Ю. Вараксин, М.В. Протасов
A.Yu. Varaksin, M.V. Protasov
Анализ движения частиц в свободных концентрированных вихрях 
применительно к проблеме безопасности полетов  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
Analysis of Particle Motion in Wall-Free Concentrated Vortexes in Relation 
to Flight Safety Problem

контроль и мониторинг
control and Monytoring

С.В. Половченко, П.В. Чартий
S.V. Polovchenko, P.V. Chartiy
Восстановление функции распределения частиц по размерам 
с использованием методов лазерного зондирования  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
Reconstruction of Function of Particles Distribution by Sizes  
with Laser Sensing Method Use

методы и средства обеспечения безопасности

MEthods and MEans of safEty

Г.П. Павлихин, В.А. Львов, О.Г. Калугина
G.P. Pavlikhin, V.A. Lvov, O.G. Kalugina
Оценка влагоемкости силикагеля для обеспечения безопасной 
эксплуатации пневматических систем  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
Evaluation of Silica Gel Water Capacity for Pneumatic Systems’ Safe  
Operation Assurance

Свидетельство Роскомнадзора

ПИ № ФС77-44004
Издается с 2006 года

Учредитель:
Коллектив редакции журнала

Издается: 
при поддержке МГТУ им. Н.Э. Баумана, УМО 
вузов по университетскому политехническому 
образованию и НМС по безопасности 
жизнедеятельности Минобрнауки России

Главный редактор 
Владимир Девисилов

Издатель:
ООО «Научно-издательский центр ИНФРА-М»

Отдел предпечатной подготовки 
Белла Руссо

Выпускающий редактор 
Анастасия Путкова 
Тел. (495) 280-15-96 (доб. 501) 
e-mail: 501@infra-m.ru

Отдел подписки 
Маргарита Назарова 
Тел.: (495) 280-15-96 (доб. 249) 
e-mail: podpiska@infra-m.ru

Присланные рукописи не возвращаются.

Точка зрения редакции может не совпадать  
с мнением авторов публикуемых материалов.

Редакция оставляет за собой право самостоятельно  
подбирать к авторским материалам иллюстрации, менять 
заголовки, сокращать тексты и вносить в рукописи необходимую стилистическую правку без согласования с авторами. 
Поступившие в редакцию материалы будут свидетельствовать о согласии авторов принять требования редакции.

Перепечатка материалов допускается  
с письменного разрешения редакции.

При цитировании ссылка на журнал «Безопасность 
в техносфере» обязательна.

Письма и материалы для публикации  
высылать по адресу:  
127282, Россия, Москва, ул. Полярная,  
д. 31в, стр. 1, журнал «БвТ»  
Тел.: (495) 280-15-96 (доб. 501) 
Факс: (495) 280-36-29 
e-mail: magbvt@list.ru, mag12@infra-m.ru,  
bvt@magbvt.ru 
Сайты журнала:  
http://www.magbvt.ru, http://www. naukaru.ru

© ООО «Научно-издательский центр ИНФРА-М», 
2014

Формат 60×84/8.  Бумага офсетная № 1. 
Тираж 1000 экз.
Подписные индексы:  
в каталоге агентства «Роспечать» —  
18316, объединенном каталоге 
«Пресса России» — 11237

DOI 10 .12737/issn .1998-071X

Ю.В. Трофименко, В.С. Ворожнин, В.Б. Давыдов, С.С. Зубова
Yu.V. Trofimenko, V.S. Vorozhnin, V.B. Davydov, S.S. Zubova
Оценка эффективности очистки воздуха на улично-дорожной сети 
крупного города зелеными насаждениями и фотокаталитическими 
очистителями  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
Air Purification Efficiency Assessment on Large City’s Street Road Network 
by Green Plantings and Photocatalytic Cleaners

чрезвычайные ситуации

EMErgEncy

Б.С. Мастрюков, А.А. Блинова
B.S. Mastryukov, A.A. Blinova
Опасность взрыва облака биогаза, образующегося на полигонах 
твердых бытовых отходов     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
Explosion Hazard of Biogas Cloud Formed at Solid Waste Landfills   

аналитический обзор

analytical rEviEw

И.В. Бухтияров, М.Ю. Рубцов
I.V. Bukhtiyarov, M.Yu. Rubtsov
Моббинг и буллинг как факторы развития профессионального 
стресса  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Mobbing and Bullying As Occupational Stress Factors 

Б.Н. Рахманов, Ю.П. Пальцев, В.Т. Кибовский, В.А. Девисилов
B.N. Rakhmanov, Yu.P. Paltsev, V.T. Kibovskiy, V.A. Devisilov
Лазерная техника и безопасность . Вчера, сегодня, завтра . Часть 3  .  .  . 75
Lasers and Safety. Yesterday, Today, Tomorrow. Part 3

информируем читателя

inforMation

Семь российских вузов — в первой сотне лучших университетов 
стран БРИКС  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86
Seven Russian Universities Are in the First Hundred of the Best
BRICS Universities

Предварительные итоги реформирования  
Российской академии наук  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87
Preliminary Results of the Reform Russian Academy of Sciences

Всероссийский инженерный конкурс — 2015 открыт  .  .  .  .  .  .  .  .  .  .  .  .  . 87
All-Russian Engineering Fair — 2015 is Open.

О проведении первой Всероссийской недели охраны труда   .  .  .  .  .  . 88
On Carrying out the First Week of the All-Russian Labor Protection

Журнал «Безопасность в техносфере» включен в перечень 
ведущих научных журналов, в которых по рекомендациям 
ВАК РФ должны быть опубли кованы научные результаты 
диссертаций на соискание ученых степеней доктора  
и кандидата наук, а также в американскую базу периодических 
и продолжающихся изданий Ulrich’s .

РЕДАКЦИОННЫЙ СОВЕТ
Александров Анатолий Александрович (Председатель совета),
ректор МГТУ им. Н.Э. Баумана, заведующий кафедрой, д-р техн. 
наук, профессор
Алёшин Николай Павлович, 
зав. кафедрой МГТУ им. Н.Э. Баумана, академик РАН,  
д-р техн. наук, профессор
Аткиссон Алан (Alan AtKisson) — Швеция (Sweden),
Президент Atkisson Group, советник Комиссии ООН по 
устойчивому развитию, член Комиссии по науке и технологическому развитию при Президенте Еврокомиссии Жозе Мануэле 
Баррозу (EU Commission President’s Council of Advisors on Science 
and Technology)
Бабешко Владимир Андреевич,
зав. кафедрой Кубанского государственного университета, 
директор НЦ прогнозирования и предупреждения 
геоэкологических и техногенных катастроф, академик РАН,  
д-р физ.-мат. наук, профессор
Бухтияров Игорь Валентинович
директор НИИ медицины труда РАМН, д-р мед. наук, профессор
Гарелик Хемда (Hemda Garelick) — Великобритания (United Kingdom), 
Professor of Environmental Science and Public Health Education, 
School of Health and Social Sciences (HSSC) Middlesex University,
Programme Leader for Doctorate in Professional Studies Environment and Risk (HSSC), PhD.
Касимов Николай Сергеевич, 
декан географического факультета МГУ им. М.В. Ломоносова, 
вице-президент Русского географического общества,  
зав. кафедрой, академик РАН, д-р геогр. наук, профессор
Махутов Николай Андреевич, 
главный научный сотрудник Института машиноведения им. 
А.А. Благонравова РАН, руководитель рабочей группы при 
Президиуме РАН по проблемам безопасности, чл.-корр РАН,  
д-р техн. наук, профессор
Мейер Нильс И . (Niels I . Meer) — Дания (Denmark), 
профессор Датского технического университета (дат. Danmarks 
Tekniske Universitet, DTU, англ. Technical University of Denmark)
Соломенцев Юрий Михайлович, 
президент МГТУ «Станкин», заведующий кафедрой, чл.-корр. РАН, 
д-р техн. наук, профессор
Тарасова Наталия Павловна,
директор института  проблем устойчивого развития, 
заведующая кафедрой РХТУ им. Д.И. Менделеева,  
чл.-корр. РАН, д-р хим. наук

РЕДАКЦИОННАЯ КОЛЛЕГИЯ
Васильев Андрей Витальевич,
зав. кафедрой Самарского государственного технического 
университета, д-р техн. наук, профессор
Вараксин Алексей Юрьевич, 
заведующий отделением Объединенного института высоких 
температур РАН, чл.-корр. РАН, д-р физ.мат. наук, профессор
Власов Валерий Александрович, 
секретарь Совета Безопасности Республики Татарстан,  
канд. техн. наук, профессор, генерал-лейтенант
Девисилов Владимир Аркадьевич,
доцент кафедры МГТУ им. Н.Э. Баумана, канд. техн. наук
Дыганова Роза Яхиевна,
зав. кафедрой Казанского государственного энергетического 
университета, д-р биол. наук, профессор
Дьяченко Владимир Викторович,
заместитель директора по научной и учебной работе 
Новороссийского политехнического института (филиала) КубГТУ, 
профессор, канд. сел.-хоз. наук, д-р геогр. наук
Егоров Александр Федорович,
зав. кафедрой РХТУ им. Д.И. Менделеева, д-р техн. наук, профессор
Козлов Николай Павлович,
главный научный сотрудник НУК «Э» МГТУ им. Н.Э. Баумана,  
д-р техн. наук, профессор
Кручинина Наталия Евгеньевна,
декан инженерного экологического факультета, зав. кафедрой 
РХТУ им. Д.И. Менделеева, канд. хим. наук, д-р техн. наук, профессор
Майстренко Валерий Николаевич,
зав. кафедрой Башкирского государственного университета,  
чл.-корр. АН Республики Башкортостан, профессор, д-р хим. наук
Матягина Анна Михайловна,
доцент Московского государственного университета 
гражданской авиации, канд. техн. наук
Никулин Валерий Александрович,
исполнительный вице-президент Российской инженерной 
академии, ректор Камского института гуманитарных  
и инженерных технологий,  д-р техн. наук, профессор
Павлихин Геннадий Петрович,
д-р техн. наук, профессор МГТУ им. Н.Э. Баумана
Петров Борис Германович,
руководитель Приволжского Управления Ростехнадзора,  
канд. техн. наук, профессор
Пушенко Сергей Леонардович,
директор ИИЭС Ростовского государственного строительного 
университета, канд. техн. наук, профессор
Рахманов Борис Николаевич,
профессор Московского государственного университета путей 
сообщения, д-р техн. наук
Реветрио Роберто ( Roberto Revetrio)
д-р наук (PhD), профессор Университета Генуи, Италия
Рубцова Нина Борисовна,
заведующая научным координационно-информационным 
отделом ГУ НИИ медицины труда РАМН, д-р биол. наук
Севастьянов Борис Владимирович,
зав. кафедрой «Безопасность жизнедеятельности»  
Ижевского государственного технического университета,  
канд. пед. наук, д-р техн. наук, профессор
Сущев Сергей Петрович, 
генеральный директор ООО «Центр исследований 
экстремальных ситуаций», д-р техн. наук, профессор
Трофименко Юрий Васильевич,
зав. кафедрой Московского автомобильно-дорожного института 
(государственного технического университета),  
д-р техн. наук, профессор
Федорец Александр Григорьевич,
директор Автономной некоммерческой организации  
«Институт безопасности труда», канд. техн. наук, доцент

Экологическая безопасность
Ecological Safety

Безопасность в техносфере, №6 (ноябрь–декабрь), 2014
3

УДК: 504.75.05 
DOI: 10.12737/6630
Sustainable Management of Chemicals in Russia — 
Improving the Use of Chemicals and Minimizing the 
Danger for Nature and Human Beings

A. AtKisson, Senior Fellow1 
A.S. Makarova, Leading Researcher, PhD2 
N.P. Tarasova, Director of the Institute of Chemistry and Problems of Sustainable Development, Member of the Russian 
Academy of Sciences, Doctor of Science (Chemistry), Professor2 
S.V. Makarov, Associate Professor, PhD2

1 Center for Sustainable Development, Uppsala University, Sweden 
2 D.I. Mendeleev University of Chemical Technology of Russia

e-mail: annmakarova@mail.ru

In this article we have analyzed the system of chemicals management in Russia. We have 
used the TSIS (“Trends & Indicators, Systems, Innovation, Strategy”) method as a tool 
for the analysis of the current state and for the elaboration of the concept of sustainable 
management of chemicals in Russia. The analysis showed that sustainable management 
of chemicals in Russia today might most effectively consist of:
• The creation of the legal framework, including legislative support for many existing best 
practices;
• Involvement of chemicals businesses and the general public in the process of promoting 
management, including creation of a culture of consumption and production of 
sustainable chemicals;
• In addition to the state regulation, the implementation of business initiatives and the 
tools of self-regulation for business.
We have found out that the organization of sustainable management of chemicals in 
Russia will require changes in chemical production (including internalizing the expenses 
now externalized to nature) and the consumption chains. The time to act is now, otherwise 
the planned growth in the production and consumption of chemicals is very likely to lead 
to catastrophic consequences both for the nature and for the human health. For the most 
part, best practices in sustainable management of chemicals (practices that could have a 
positive impact on the situation) are known in Russia. However, their effectiveness is low. 
The situation reflects the absence of a Russian legal framework on chemicals safety, and 
the current low motivation of business to adopt the best practices in the absence of clear 
signals from the state that it should be so. In order to create the system of sustainable 
management of chemicals, the state authorities should not only use the state regulation, 
but also actively promote and develop business initiatives and involve the society.

Keywords:  
sustainable development,  
chemicals,  
environment,  
risk,  
management.

1 . Introduction
“We stand at a critical moment in Earth’s history, a 
time when humanity must choose its future. As the world 
becomes increasingly interdependent and fragile, the future at once holds great peril and great promise”. This text 
from the Earth Charter can be fully applied to management of chemicals. These words are supported by the 

text from Agenda 21 that was adopted during the United 
Nations Conference on Environment and Development 
(UNCED) in 1992, and reaffirmed in 2012 by the United 
Nations Conference on Sustainable Development. Section 
19 of Agenda 21 states that “a substantial use of chemicals 
is essential to meet the social and economic goals of the 
world community and today’s best practice demonstrates 

Экологическая безопасность
Ecological Safety

4

that they can be used widely in a cost-effective manner and 
with a high degree of safety”. But at the same time, Agenda 
21 notes that chemicals can be (and in some areas have 
become) the cause of adverse effects on human health and 
nature. 
In 2009, in «Nature», the article was published that 
described estimations of the main anthropogenic pressures [1]. “Planetary boundaries” have been identified in 
nine key parameters: climate change, ocean acidification, 
ozone depletion, nitrogen and phosphorus cycles, global freshwater use, change in terrestrial ecosystems, the 
level of biodiversity loss, the concentration of emissions 
of aerosols and chemical pollution. For seven of the nine 
parameters boundary values were defined. Going beyond 
the boundary values can lead to irreversible changes in 
the biosphere. But the boundaries have not been determined for aerosols and chemical contamination due to 
their complexity. Lack of boundaries for chemicals leads 
to a lack of knowledge about the global risk and to a lack 
of ability to manage risk. But today, chemical pollution 
is a serious concern in the world. Planetary boundaries 
are one of the foundations of the sustainable development 
goals [2] of environmental protection and the criteria for 
their achievements. However, the absence of planetary 
boundaries for chemical pollution actuators leads to 
a lack of goals and criteria in this field.
Thus we need an approach to sustainable management of chemicals. Sustainable management of chemicals is a process that equally takes into account nature, 
economy, society and individual well­being. Sustainable 
management of chemicals is a top priority for many international associations. For example, APEC Chemical 
Dialogue (CD) includes “Encourage Chemical Product 
Stewardship, Safe Use and Sustainability” [3] among its 
main goals. CD developed “The Principles for Best Practice Chemical Regulation” containing recommendations 
for sustainable management of chemicals. According to 
these principles, sustainable management of chemicals 
should [4]: 
• be minimally required to achieve stated goals;
• adopt a risk management approach to developing 
and administering regulation;
• be flexible, not prescriptive, and be compatible with 
the business operating environment;
• be science­based.
Russia, being the active APEC member, can use these 
principles in the national system of sustainable management of chemicals. A priority for Russia lies in refocusing economic strategy away from mining raw materials 
to high­tech chemistry. This goal is noted in the Development Strategy for Russian Chemical and Petrochemical 
Industry through 2015 (hereinafter DS 2015) [5] and the 
Development Plan for Russian Gas and Oil Production 
for the period until 2030 (hereinafter — Plan 2030) [6]. 

Achieving this goal will increase the use of chemicals. But 
implementation of this goal should be pursued in a way 
that does not negatively affect nature and human beings. 
Adopting sustainable management of chemicals is a way 
for Russia to combine the development of its chemical industry with the protection of environmental and social 
well­being. The aim of sustainable management of chemicals in Russia can be articulated as “improving the use 
of chemicals and minimizing the danger for nature and 
humans”.

2 . Creation of sustainable management of chemicals 
in Russia
We are using the TSIS method [7] as a tool for the 
creation of sustainable management of chemicals in Russia. This method took its name from the first letters of the 
following four stages:
T — Trends and indicators. This stage includes analysis of available data on the effects of the object of research on environmental, economic, societal and individual well­being dimensions, and identifying current 
trends.
S — Systems. This stage consists of system model construction and identification of critical cause­effect relationships within the system, with a subsequent search for 
leverage points (system components where the introduction of any changes and / or innovations can be the most 
effective).
I — Innovation. This stage includes selection and evaluation of stability­improving innovations that can contribute to sustainable development.
S — Strategy. This stage includes building a common 
strategy for the implementation of selected innovations.

3 . System description 
The object of our research is “The process of chemicals 
management in Russia”. We used a Mind map (Fig. 1) to 
define its framework.
When we created the Mind map, we developed the answers to four basic questions:
WHO are the main stakeholders involved in the process of chemicals management? The Mind map defines 
state, business and Russian and international society.
WHAT exactly is exposed to risk or damage during the 
cycle of chemicals management? The Mind map defines 
the environment (air, water, soil and biota) and the health 
of employees (maintenance staff) and general public.
WHEN do chemicals affect something or someone, or 
can there be other external factors? In accordance with 
international “from cradle to grave” principle, chemicals management should be carried out throughout the 
full industrial life cycle: research, manufacture, storage, 
transportation, sale, use (including domestic use) and 
waste disposal.

Экологическая безопасность
Ecological Safety

Безопасность в техносфере, №6 (ноябрь–декабрь), 2014
5

HOW do the chemicals affect somebody/something? 
Chemicals can affect the whole country or separate territories (e.g. region or city).

4 . Indicator Development
At the stage I — Indicators, we have chosen several indicators that as we believe, can help to draw conclusions about 
the sustainability of the process of chemicals management 
in Russia. We choose indicators for four major TSIS­defined categories: nature, economy, society, well­being. 
Information sources: Federal State Statistics Service 
(Rosstat), Unified Interdepartmental Statistical Information System (UISIS), Report by the Federal Service 

for Hydrometeorology and Environmental Monitoring 
(Roshydromet), Report on the Activities of the Ministry 
of Industry and Trade of the Russian Federation (period 
2004–2011), etc.
Due to the great amount of different information in 
these sources, we have further divided up the search categories into assets (important existing positive aspects, or 
development trends, that you wish to maintain or continuously improve), current and possible future concerns 
(emerging or chronic problems) and aspirations (future, 
hoped­for elements or conditions that you wish to see in 
your system) for the abovementioned factors as a preliminary step for Indicators stage (Table 1).

Table 1
Assets, Concerns and Aspirations

0B Assets
1B Concerns
2B Aspirations

3B Nature
4B Reducing amount of hazard chemicals in air, water and soil
5B Great number of “dirty” cities
6B Air, water and soil condition conforms with standards 

7B Economy
8B Raising the volumes of production
9B Resource-based economy + uncontrolled export of chemicals (including 
hazardous chemicals) 

10B Only safety chemicals are manufactured and in-demand

11B Society
12B Raising the salary and number of 
people working in chemical plants
13B Raising the number of incidence 
and occupational diseases
14B Chemicals do not affect people 
negatively 

15B Well-being
16B Using chemicals for rising quality 
of life
17B Chemicals adversely affect nature 
and humans 
18B Chemicals are used in non-hazardous way 

Figure 1 . Mind map "The Process of Chemicals Management in Russia"

Экологическая безопасность
Ecological Safety

6

Using Assets, Concerns and Aspirations and statistical data, we derived a set of relevant indicators:

• nature: pollution levels (e.g. emissions of pollutants 
into the air and discharges of polluted waste water), 
the amount of produced/recyclable waste, water and 
electricity consumption;

• economy: chemical volumes and sales income, 
export/import dynamics, funds spent by chemical manufacturers on environmental measures, 
on environmental fees and fines and expenses on 

modernization of chemical production and innovations;

• society: number of people working at chemical 
plants, average salary;

• well-being: product consumption level, life averageexpectancy, numbers of accident victims, statistics 
on occupational diseases, living communities (cities) pollution levels.

The examples of trends for selected indicators are presented in the Table 2. Where possible, we have forecast trends.

Table 2
Example of Indicators and Trends for the Process of Chemicals Management in Russia

Category
Name of 
Indicators
Trends 

Nature

Emissions of 
pollutants 
into the air 
from stationary sources 
(broken lines 
are indicating 
the trends)

                                                                    undesired trends

Nature
Sewage  
discharge

 undesired trends

Nature
Production 
and consumption waste

 undesired trends

Economy
Chemicals- 
volumes of 
production

In accordance with DS 2015 [3]
In accordance with Plan 2030 [4]
preferable trends

Economy

Ratio of 
import to 
export of 
chemicals 
in %

  undesired trend

Экологическая безопасность
Ecological Safety

Безопасность в техносфере, №6 (ноябрь–декабрь), 2014
7

Category
Name of 
Indicators
Trends 

Economy

Investments 
in technological innovations

Economy

Payments for 
allowable 
and excessive 
emissions 
(discharges) 
of pollutants 
(industrial 
and consumer 
waste)

  preferable trend

Economy

Investments 
in nature 
(fixed investment to environmental 
protection 
and rational 
use of natural 
resources)

  preferable trend

Society

The average number 
of people 
 working at 
chemical 
plants

  preferable trend

Society

Average  
salary  
of  people 
 working at 
chemical 
plants

  preferable trend

Wellbeing

Fatal occupational 
incidents and 
occupational 
injuries with 
loss of ability 
to work for 
one day or 
more

                                                               preferable trend

Table 2

Coke and oil, rubber and plastic 
products — preferable trends
Products chemical industry — 
undesired trend

Экологическая безопасность
Ecological Safety

8

5 . Diagram “the Cause-and-Effect Linkages among the 
Indicator
The stage S — Systems was aimed at the attempt to 
carry out a large­scale system analysis of the process of 
chemicals management in Russia in order to define key 
cause­effect relationships. We have analyzed the trends 
and come to the following conclusions:
• the chemical manufacturing process is vulnerable 
to economic factors (such as the crisis of 2008);
• there is a positive correlation between chemical production volumes and the amounts of pollutant emissions into the air, sewage discharge, production and 
consumption waste, the amount of injuries and occupational diseases (for example, almost all graphs 
reflect this correlation: increase in production of 
2010–2011 is followed by simultaneous increase of 
adverse effects on humans and the environment);
• the correlation between manufacturing volumes 
and adverse effects is non­linear since some revenues are spent on nature;
• “dirty cities” (i.e., cities affected by high levels of 
pollution) are still the big concern. This indicator 
is important because currently about 60% of urban 
population (or 44% of the Russian population as a 
whole) comes through breathing polluted air.

In addition, it should be noted that:
• chemical pollution and the “dirty city” phenomenon is a contributing factor to relatively low life 
expectancy in Russia;
• the Russian economy is resource­based;
• a substantial portion of hazardous chemicals is exported (roughly 1/3 of all chemical products, not 
including the chemicals in articles);
• currently in Russia hazardous chemicals in products are not regulated or monitored
There are links between the indicators of chemicals 
management process represented in Figure 2. The indicator 
“chemicals volume” is selected as the central starting point for 
this analysis. The arrows show interrelations in the system, 
and specifically the influence of one indicator on another.
Then we identified the leverage points where innovations are likely to be the most effective, based on the system structure. Innovation within the process of chemicals 
management in Russia at a leverage point can produce 
the maximum effect, at minimal cost, due to system effects. Figure 2 demonstrates a positive (reinforcing) cycle 
involving production and consumption of chemicals. The 
increased consumption of chemicals causes an increase in 
their production, then the number of people working in the 
industry and their salary increases, that has an additional 

Category
Name of 
Indicators
Trends 

Wellbeing

Employees 
with 
occupational 
disease 
(intoxication) 
discovered for 
the first time

                                                            preferable trend

Wellbeing
Consumption 
growth

  preferable trend

Wellbeing

“Dirty” 
cities — cities 
from “dirty 
priority list” 
(upper graph) 
and cities 
with high 
air pollution 
(lower graph)

  no visible trends

Table 2

Экологическая безопасность
Ecological Safety

Безопасность в техносфере, №6 (ноябрь–декабрь), 2014
9

positive effect on the consumption. This cycle, powered by 
a reinforcing feedback loop, adversely affects nature due to 
the increase of discharges, emissions and waste, and, as a 
consequence, adversely affects humans as well.
Leverage point 1.Innovation in chemical consumption (i.e., the consumers consciously choose products 
containing less hazardous chemical substances).
Leverage point 2. Reduction of risk levels and production volumes of hazardous chemicals. However, the 
Russian government considers an overall increase of 
chemicals production volume as one of its strategic goals.
Leverage point 3. Internalization of the “expenses” that 
accrue to nature and innovations in order to improve the 
quality of these economic incentives. By internalizing the 
expenses associated with damage to nature and humans, 
we can possibly establish another reinforcing cycle: qualitative and quantitative changes in management activities 
that will reduce, on the one hand, the costs for and consumption of energy, water and raw materials; and, on the 
other hand, promote a reduction in emissions and waste 
in order to reduce or avoid fees and penalties. These actions will increase innovation at the enterprise, leading to 
an increase in income of the enterprise and subsequently 
permitting more investment in environmental protection.

6 . Identification of the Relevant Practices and the 
Analysis of the Best Practices
At the stage I — Innovations, we consider the potential best practices of chemicals management, and then 
choose those that can most effectively be implemented at 
the system leverage points.  

We have analyzed the international experience and 
have chosen the following practices to review:
• the practice of informing all stakeholders, including 
the use of (Material) Safety Data Sheets ((M)SDS) 
and labelling
• the practice of risk assessment: Globally Harmonized System of Classification and Labelling of 
Chemicals (GHS), Global Product Strategy (GPS), 
OECD Decision and/or Recommendation for new 
and existing chemicals.
• the practice of state regulation: inventory of existing 
chemicals, lists of eliminated and restricted chemicals, authorization on usage and production
• self­regulation tools: systems of chemicals management, Responsible Care.
We have analyzed the selected practices and assessed 
their effectiveness at leverage points. We have estimated 
the current effectiveness of practices as well as their potential, their degree of implementation, problems hindering their full application, and the necessary changes in 
the application of practices. The results of the study are 
presented in Table 3.
The analysis showed that sustainable management of 
chemicals in Russia today would most effectively consist of:
• the creation of the legal framework, including legislative support for many existing best practices;
• the involvement of chemicals businesses and the 
general public in the process of promoting management, including creation of a culture of consumption and production of sustainable chemicals;

Figure 2 . The System for the Process of Chemicals Management in Russia