Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Взаимодействие жидких и твердых фаз в металлургических процессах

Покупка
Основная коллекция
Артикул: 766574.01.99
Рассмотрены процессы растворения твердых материалов в металлических расплавах. Проанализировано взаимодействие углеграфитовых материалов с металлическими расплавами. Раскрыты особенности взаимодействия модификаторов с жидким металлом. Освещены закономерности взаимодействия в системах «твердая металлическая подложка - металлический расплав» и «огнеупор - металлический расплав». Для специалистов в области металлургии. Может быть полезно студентам и аспирантам металлургических направлений подготовки.
Верховлюк, А. М. Взаимодействие жидких и твердых фаз в металлургических процессах : монография / А. М. Верховлюк. - Москва ; Вологда : Инфра-Инженерия, 2021. - 184 с. - ISBN 978-5-9729-0712-0. - Текст : электронный. - URL: https://znanium.com/catalog/product/1833152 (дата обращения: 25.04.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.

A. M. Верховлюк















ВЗАИМОДЕЙСТВИЕ ЖИДКИХ И ТВЕРДЫХ ФАЗ В МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССАХ

Монография



















Москва Вологда «Инфра-Инженерия» 2021

УДК 669.04
ББК34.3
     В36




Рецензенты:
доктор технических наук, профессор, академик НАН Украины, почетный директор ФТИМС НАН Украины Найдек Владимир Леонтьевич; доктор технических наук, профессор, член-корреспондент НАН Украины, заведующий отделом фазовых преобразований Института металлофизики
               им. Г. В. Курдюмова НАН Украины Коваль Юрий Николаевич






      Верховлюк, А. М.
В36 Взаимодействие жидких и твердых фаз в металлургических процессах : монография / А. М. Верховлюк. - Москва ; Вологда : ИнфраИнженерия, 2021. - 184 с. : ил., табл.
           ISBN 978-5-9729-0712-0

      Рассмотрены процессы растворения твердых материалов в металлических расплавах. Проанализировано взаимодействие углеграфитовых материалов с металлическими расплавами. Раскрыты особенности взаимодействия модификаторов с жидким металлом. Освещены закономерности взаимодействия в системах «твердая металлическая подложка - металлический расплав» и «огнеупор - металлический расплав».
      Для специалистов в области металлургии. Может быть полезно студентам и аспирантам металлургических направлений подготовки.

УДК 669.04
ББК34.3










ISBN 978-5-9729-0712-0

    © Верховлюк А. М., 2021
                            © Издательство «Инфра-Инженерия», 2021
                            © Оформление. Издательство «Инфра-Инженерия», 2021

Предисловие

    Одним из основных путей снижения металлоемкости машин, конструкций и механизмов, повышения их эксплуатационных характеристик является разработка новых сплавов и оптимизация технологических процессов. Увеличение доли высококачественных сплавов в общем объеме производства достигается путем совершенствования технологии их получения, что связано с углублением знаний о физико-химических процессах плавки, модифицирования и кристаллизации сплавов. Значительную часть явлений, происходящих в этих процессах, можно классифицировать как межфазные в широком понимании, включая сюда также растворение добавок в расплавах. Зачастую они определяют технологические параметры и свойства получаемого металла.
    Несмотря на успехи, достигнутые в области изучения межфазного взаимодействия в металлических расплавах, в том числе взаимодействие с различными добавками, модификаторами, огнеупорами, многие вопросы остаются открытыми. В то же время появляются новые процессы, системы, композиции, поэтому в теории и практике исследований межфазных явлений в металлических расплавах всегда имеются чрезвычайно важные вопросы, требующие уточнения и постановки дополнительных исследований.
    Известен ряд основополагающих данных о связи между строением и свойствами расплавов, технологическими параметрами плавки, а также свойствами сплавов в твердом состоянии. Свойства расплавов оказывают влияние на термодинамические характеристики систем и влияют на кинетику протекающих процессов. Так, например, поверхностные свойства, вязкость, плотность и другие свойства жидких сплавов в значительной мере определяют скорости физико-химических процессов, в частности, процессов растворения, массопереноса и др. В металлургических технологиях чрезвычайно большую роль имеют процессы растворения различных фаз и поверхностные явления при взаимодействии твердых тел (добавок, огнеупоров и т. п.) с расплавами. Большинство металлургических процессов основано на гетерогенных химических реакциях и

3

процессах, связанных с исчезновением одних и появлением других фаз. В связи с этим приходится учитывать, что свойства и составы пограничных слоев отличаются от объемных свойств.
    При образовании новых фаз, вероятность их флуктуации определяется работой, необходимой для ее дальнейшего роста и развития. Это связано с наличием большой удельной поверхности зародыша и поэтому существенно зависит от величины межфазного натяжения на границе зародыш - среда. Чем меньше поверхностное натяжение, тем меньшая работа требуется для образования зародыша, тем благоприятнее условия для образования новой фазы.
    Наличие в расплавах поверхностно-активных примесей облегчает условия образования новой фазы (неметаллических включений, кристаллов, пузырьков газа и т. д.). В то же время, поверхностно-активные элементы, адсорбируясь на поверхности новой фазы, могут тормозить ее рост. На этом свойстве поверхностно-активных элементов основаны процессы модифицирования чугуна и стали.
    Растворение легирующих и модифицирующих добавок осуществляется за счет эффекта их диспергирования в расплаве в результате адсорбционного понижения поверхностной энергии.
    Огромная роль межфазных явлений проявляется также в производстве прецизионных сплавов: аморфных и композиционных материалов. Формирование из металлических расплавов отдельных фаз, либо торможение этих процессов зависит от многих физико-химических свойств (плотность, теплоемкость, вязкость, поверхностное натяжение и др.). Снижение вязкости и поверхностного натяжения способствует образованию мелкодисперсных фаз, а повышение поверхностного натяжения при снижении вязкости металлических расплавов -сфероидизации частиц. Управлять процессами формирования фаз в металлических системах можно при наличии знаний о строении и поверхностных свойствах расплавов.

4

Основные условные обозначения

ожг - поверхностное натяжение, мДж/м²;
отг - поверхностное натяжение твердого тела, мДж/м²;
отж - поверхностное натяжение между твердым телом и жидкостью, мДж/м²;
Wₐ- работа адгезии, мДж/м²;
в - контактный угол смачивания, град.;
g - ускорение свободного падения, м²/с;
Др - разность плотностей между жидкой и газообразной фазами, кг/м³;
С - концентрация, кг/м³;
v - кинематическая вязкость, м/с;
m - масса, кг;
j - поток массы (удельная скорость растворения), кг/м²-с;
Р - константа скорости растворения (коэффициент массопереноса);
v - скорость движения, м/с;
Sc - число Шмидта (Sc = v/D);
R - радиус диска, м;
го - скорость вращения образца рад./с;
D - коэффициент диффузии, м²/с;
D^ - эффективный параметр растворения, м²/с;
DCₘₑ - коэффициент диффузии углерода в твердом металле, м²/с;
Е - величина э.д.с., мВ;
а₀ - активность кислорода;
ЛZ - изобарно-изотермический потенциал, ккал/моль;
Т- температура, К;
г - время, с.

5

ГЛАВА 1
ПРОЦЕССЫ РАСТВОРЕНИЯ ТВЕРДЫХ МАТЕРИАЛОВ В МЕТАЛЛИЧЕСКИХ РАСПЛАВАХ

    Прогнозы развития техники показывают, что производство и потребление чугунного литья в машиностроении растет, так как по экономичности и комплексу свойств отливки из чугуна имеют неоспоримые преимущества в сравнении с отливками из других сплавов.
    Повышение качества чугунных отливок имеет первостепенное значение для всех отраслей современного машиностроения, так как позволяет увеличить срок службы изделий, снизить их металлоемкость и в целом сократить их потребность.
    Проблема повышения качества отливок из чугуна носит комплексный характер и включает следующие вопросы: выбор и подготовка шихтовых материалов, оптимизацию процессов плавки, разработку способов воздействия на структурообразование и кристаллизацию расплавов на основе железа.
    Многочисленные исследования показывают, что повышение качества железоуглеродистого сплава и снижение металлоемкости изделий существенно зависит от технологического процесса плавки и внепечной обработки, а именно: особенностей растворения углерода, отдельных химических элементов, ферросплавов, модификаторов, взаимодействия с футеровочными материалами, что в конечном итоге приводит к гомогенизации, инокулированию и модифицированию.
    Согласно современным представлениям механизм растворения твердых образцов в металлических расплавах можно представить следующим образом [1, 2]. При обтекании твердого тела жидкостью, наряду с гидродинамическим пограничным слоем, образуется диффузионный пограничный слой, в котором концентрация элементов растворяемого вещества меняется от концентрации насыщения на границе с твердым телом, до концентрации в растворе. С увеличением скорости натекания толщина пограничного диффузионного слоя

6

уменьшается, и при достаточно большом значении скорости набегающего потока растворение переходит в кинетический режим, что можно трактовать как уменьшение толщины диффузионного пограничного слоя до нуля. Таким образом, диффузионный пограничный слой представляет собой некоторое сопротивление массопереносу вещества от твердого тела к раствору. Максимальная скорость растворения наблюдается в кинетическом режиме, когда сопротивление массопереносу равно нулю. В этом случае скорость растворения определяется скоростью отделения частиц вещества от твердого тела.
    При высоких скоростях потока происходит турбулизация гидродинамического пограничного слоя, что приводит к изменению качественной картины обтекания твердого тела жидкостью. В результате, уравнения гидродинамики и конвективной диффузии, описывающие ламинарный поток и массоперенос в нем, становятся неприемлемыми для расчета параметров обтекания и массопе-реноса. В определенном приближении можно сохранить общий вид уравнения конвективной диффузии и при этом ввести формально коэффициент турбулентной диффузии Dₘyₚe, который может быть на 3-4 порядка выше коэффициента молекулярной диффузии.
    Математическое описание процессов растворения разрабатывались различными авторами. Подробное изложение этих вопросов содержится в следующих работах [1-6]. В связи с тем, что растворение в большинстве случаев происходит в диффузионном режиме, основная масса работ посвящена диффузионной кинетике. Задача сводится к решению уравнения конвективной диффузии с соответствующими граничными и начальными условиями. Уравнение конвективной диффузии получают на основе закона сохранения массы и первого уравнения Фикау = - D grad C [2]:

dC/dr = ( v grad C) D.\ C,                 (1.1)

где j - поток вещества, кг/(м²-с);
    D - коэффициент диффузии, м²/с;
    C - массовая концентрация компонента в растворе, %;
    г - время, с.
    Если растворяемое вещество находится в движущейся жидкости, то она увлекает его в своем потоке. При этом наряду с диффузионным процессом наблюдается и конвективный поток:

jKo„ₑ = Cv,                         (1.2)
j = Cv -D gradC.                       (1.3)


7

    Для неподвижной жидкости (v = 0) уравнения (1.1 и 1.3) превращаются во второе уравнение Фика:

dC dr D K C.                         (1.4)

    Граничные условия, как правило, задают в приближении диффузионного пограничного слоя, предполагая, что концентрация на границе твердого тела с жидкостью равна концентрации насыщения, а на расстоянии 5 от твердой поверхности концентрация элементов растворяемого вещества равна концентрации в растворе, причем последняя не зависит от координат.
    Возможны три случая для описания процесса растворения:
    а)      скорость переноса частиц в жидкость намного меньше скорости их отделения от твердого тела;
    б)      скорость переноса частиц в жидкость намного больше скорости их отделения от твердого тела;
    в)     самый сложный случай - обе скорости (а) и (б) сравнимы.
    В первом случае наличие твердого тела можно игнорировать, заменив его пограничным слоем, отражающим условия равновесия на межфазной границе. Если процесс лимитируется отделением частиц, то растворение происходит в кинетическом режиме. Второй случай соответствует диффузионному режиму растворения и определяется скоростью уноса частиц от поверхности взаимодействующих фаз. Смешанный режим растворения наблюдается тогда, когда скорости обеих стадий сравнимы. В основном твердые вещества в жидкостях растворяются в диффузионном режиме, для которого справедливо уравнение Нернста - Щукарева [1,3,7]:

j = fr CL-C),                        (1.5)

где j - поток растворяющегося вещества;
    Д- коэффициент пропорциональности;
    CL-концентрация насыщения;
    C - концентрация в растворе.
    В смешанном режиме зависимость скорости растворения от параметров, характеризующих систему, выражается следующим уравнением [8]:

dm/dr=D (CL-C) /(5+D/K),                    (1.6)

8

где К- константа скорости перехода частиц из твердого вещества в раствор;
    D - коэффициент диффузии;
    5 - толщина пограничного слоя;
    m - масса;
    т- время растворения.
    Для диффузионного режима выполняется условие D / К << 1 и уравнение (1.6) превращается в уравнение (1.5), причем 0=D /5.
    При растворении технических веществ процесс осложняется присутствием в механизме растворения ощутимой доли эрозии и диспергирования. В этом случае применение уравнения (1.5) для расчетов параметров растворения носит формальный характер, а коэффициент Д является некоторой эффективной величиной, для определения которой неприменима в строгом смысле формула Д= D /5. Для упрощения расчетов уравнение (1.5) приближенно представляют в следующем виде [3, 9-10]:

dC/dr=K CL-C).                         (1.7)

    Интегрируя это выражение, получаем экспоненциальную зависимость концентрации от времени:

(Cl - C) / (Cl - Co) = ехр (-Кт),           (1.8)

где Cₒ - начальная концентрация в растворе;
    К=Д /И= DS/5 V;
    S - площадь контакта твердого тела с жидкостью;
    V- объем раствора.
    Для растворяющихся частиц сложной формы при значительных изменениях концентрации в процессе растворения рассмотренное приближение в некоторых случаях не дает достоверных результатов.
    Значения скорости растворения и коэффициентов диффузии химических элементов в расплавах на основе железа, полученные различными методами и различными авторами, даже для одинакового химического состава и температуры иногда существенно различаются между собой [10-11]. Этот разброс, вероятно, связан с неучтенными факторами, которые появляются в процессе эксперимента, а также с методами их получения. Например, коэффициенты диффузии углерода в железоуглеродистом расплаве, определенные капиллярным методом и методом вращающегося диска с равнодоступной поверхностью, различаются между собой на порядок и выше. На наш взгляд наиболее приемлемым для

9

определения технологических параметров является метод вращающегося диска с равнодоступной поверхностью, преимущества которого описаны в [2, 12].
    В связи с этим, для исследования кинетики растворения твердых материалов в металлических расплавах применяли данный метод. Необходимым условием для корректного проведения опытов в этом методе является ламинарное натекание жидкого потока на диск. Это определяется сравнительно низкими значениями числа Рейнольдса:

Re Я ²т /и < 10⁴.                      (1.9)

    Гидродинамическая задача натекания жидкости на вращающийся диск решена в приближении бесконечно большого радиуса. Отсюда следует еще одно условие: гидродинамический пограничный слой должен быть мал по сравнению с радиусом диска. В. Г. Левич показал, что гидродинамический пограничный слой оценивается формулой [2]:

        5«3,6(ц/®)¹/²<<Я .                     (1.10)

    Это условие для определения параметров эксперимента можно представить в сокращенном виде:

3,6 (и/®)¹/²<<Я.                     (1.11)

    Растворение образца будет определяться потоком частиц от твердого тела в жидкость. Экспериментальный поток для указанных условий корректен для чисел Шмидта 6 < Sc <500:

j = 0,489 Sc ⁰,³⁷⁴ Di' °⁴ го ⁰,⁵ (CL - C).   (1.12)

    Образцы (диаметр 10-12 мм) для исследований изготовлялись на токарном станке, а затем шлифовались для устранения неровностей поверхности и биения. Модификаторы и ферроматериалы переплавляли в алундовых тиглях и заливали в цилиндрические графитовые обоймы. Торцевую поверхность образцов обрезали с помощью алмазного круга, после чего тщательно шлифовали. Боковую поверхность графитовых образцов и обойм защищали с помощью нанесения покрытия на основе диборида циркония и бора [278]. Время контакта твердых образцов с расплавом колебалось от 10 до 60 секунд в зависимости от температуры и химического состава расплава. В ходе экспериментов повышается

10