Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Материаловедение : механические свойства металлов. Термическая обработка металлов. Специальные стали и сплавы

Покупка
Артикул: 751183.01.99
Доступ онлайн
2 000 ₽
В корзину
Пособие содержит материал, необходимый для самостоятельной подготовки иностранных студентов к лекциям и практическим занятиям по дисциплинам «Теория и технология термической обработки металлов», «Специальные стали и сплавы», «Механические свойства металлов», «Конструкционные материалы». Рассмотрены следующие разделы: деформация, разрушение и механические свойства, фазовые и структурные превращения при нагреве и охлаждении, основные виды термической обработки, подробно рассмотрены основные виды специальных сталей и сплавов и области их применения в технике. В каждом разделе пособия приведены вопросы для самопроверки освоения материала. Этот материал даст студентам целостное представление о процессах, происходящих в сталях при термическом и деформационном воздействии, о взаимосвязи структуры и свойств, об основных принципах легирования сталей и сплавов, о способах обеспечения требуемой структуры и комплекса свойств методами термической обработки в сталях и сплавах различного назначения. Пособие предназначено для бакалавров и магистров, обучающихся по направлениям 150100 «Материаловедение и технологии материалов», 150400 «Металлургия», 011200 «Физика».
Турилина, В. Ю. Материаловедение : механические свойства металлов. Термическая обработка металлов. Специальные стали и сплавы : учебное пособие / В. Ю. Турилина ; под. ред. С. А. Никулина. - Москва : Изд. Дом МИСиС, 2013. - 154 с. - ISBN 978-5-87623-680-7. - Текст : электронный. - URL: https://znanium.com/catalog/product/1223627 (дата обращения: 25.04.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ 

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ  
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ  
«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС» 

 

 
 
 

 

 

 

 
 

 

№ 2138 

Кафедра металловедения и физики прочности

В.Ю. Турилина 
 
 

Материаловедение 

Механические свойства металлов.  
Термическая обработка металлов.  
Специальные стали и сплавы 

Учебное пособие 

Под редакцией профессора С.А. Никулина 

Допущено учебно-методическим объединением по образованию 
в области металлургии в качестве учебного пособия  
для студентов высших учебных заведений,  
обучающихся по направлению Металлургия 

Москва  2013 

УДК 669.017 
 
Т86 

Р е ц е н з е н т  
д-р техн. наук, проф. С.В. Добаткин (ИМЕТ им. А.А. Байкова РАН) 

Турилина, В.Ю. 
Т86  
Материаловедение : механические свойства металлов. Термическая обработка металлов. Специальные стали и сплавы : 
учеб. пособие / В.Ю. Турилина ; под ред. С.А. Никулина. – М. : 
Изд. Дом МИСиС, 2013. – 154 с. 
ISBN 978-5-87623-680-7 

Пособие содержит материал, необходимый для самостоятельной подготовки иностранных студентов к лекциям и практическим занятиям по дисциплинам «Теория и технология термической обработки металлов», «Специальные стали и сплавы», «Механические свойства металлов», «Конструкционные материалы». Рассмотрены следующие разделы: деформация, разрушение и механические свойства; фазовые и структурные превращения при нагреве и охлаждении; основные виды термической обработки; подробно рассмотрены основные виды специальных сталей и сплавов и области их применения в технике. В каждом разделе пособия приведены вопросы для самопроверки освоения материала. 
Этот материал даст студентам целостное представление о процессах, происходящих в сталях при термическом и деформационном воздействии, о взаимосвязи структуры и свойств, об основных принципах легирования сталей и 
сплавов, о способах обеспечения требуемой структуры и комплекса свойств 
методами термической обработки в сталях и сплавах различного назначения. 
Пособие предназначено для бакалавров и магистров, обучающихся по 
направлениям 
150100 «Материаловедение 
и 
технологии 
материалов», 
150400 «Металлургия», 011200 «Физика». 

УДК 669.017 

ISBN 978-5-87623-680-7 
© В.Ю. Турилина, 2013 

THE MINISTRY OF EDUCATION AND SCIENCE  
OF THE RUSSIAN FEDERATION 

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY “MISiS” 

 

 
 
 

 

 

 

 
 

 

№ 2138 

Department of Physical Metallurgy and the Physics of Strength

V.Yu. Turilina 
 
 

Material Science

Mechanical properties of metals.  
Heat treatment of metals.  
Special steels and alloys 

Textbook 

Edited by professor S.A. Nikulin 

 

Moscow 2013 

MISiS
PUBLISHING HOUSE 

R e v i e w e r  
Dr. Sc., Professor S.V. Dobatkin (IMET RAN) 

Turilina, V.Yu. 
 
 
Material science : mechanical properties of metals. Heat treatment 
of metals. Special steels and alloys : textbook / V.Yu. Turilina ;  
edited S.A. Nikulin. – М. : Publishing House "MISiS", 2013. – 154 p. 
 

The textbook contains the material needed for self-training foreign students  
to lectures and practical classes on academic disciplines "Theory and technology  
of heat treatment of metals", Special Steels and Alloys", "Mechanical properties  
of metals", "Engineering Materials". It includes the following sections: 
deformation, 
fracture 
and 
mechanical 
properties, 
phase 
and 
structural 
transformations during heat treatment, the main types of heat treatment, the main 
types of special steels and alloys and their applications in engineering. Each 
section of the book contains questions for self-learning. 
This material will provide students with a complete picture of the processes 
occurring in the steel under thermal effect and deformation, the relationship  
of structure and properties, the basic principles of alloying steels and alloys, how 
to provide the required structure and properties by heat treatment in steels and alloys for various purposes. 
The textbook is intended for undergraduate and graduate students in areas of 
150100 "Materials Science and Technology of Materials", 150400 "Metallurgy", 
011200 "Physics". 

CONTENTS 

Part 1 Mechanical properties of metals 
6 

1.1 Basic concepts and definitions 
6 

1.2 Deformation and fracture 
9 
1.2.1 Elastic deformation 
9 
1.2.2 Plastic deformation 
14 
1.2.3 Strengthening of metals 
16 
1.2.4 The fracture of materials 
18 

1.3 Mechanical testing of metals 
28 
1.3.1 Classification of mechanical tests 
29 
1.3.2 The main types of mechanical tests 
29 
Part 2 Management structure  during heat treatment of steel 
62 
2.1 Basic concepts and definitions 
62 

2.2 Transformations in steel during heating and cooling 
70 
2.3 Heat treatment 
87 
2.3.1 Classification of heat treatment 
87 
2.3.2 First-order annealing 
88 
2.3.3 Second-order annealing 
91 
2.3.4 Hardening (quenching) 
95 
2.3.5 Tempering of steel 
98 
2.3.6 Precipitation hardening 
101 
2.3.7 Surface hardening 
101 
Part 3 Special steels and alloys 
102 
3.1 Ferrous alloys 
105 
3.1.1 General classification 
106 
3.1.2 Designation of steels 
110 
3.1.3 Constructional steels 
110 
3.1.4 Tool Steels 
126 
3.1.5 Steels with special physical properties 
138 
3.2 Non-ferrous alloys 
147 
References 
153 
 

Part 1 MECHANICAL PROPERTIES OF METALS 

1.1 Basic concepts and definitions 

In the course of operation or use, all articles and structures are subject to the action of external forces which create internal stresses in the 
metal. And that is inevitably cause deformation. 
To keep these stresses, and, consequently, deformations within 
permissible limits (to prevent structural failure), it is necessary to select 
suitable materials for the components of various designs and to apply the 
most effective heat treatment. 
In the production of any product or design of metal is very important to know the basic characteristics of workpieces and fabricated metal 
product (strength, stiffness, hardness, toughness, and ductility). 
Mechanical properties – these are the characteristics that define the 
behavior of metal under the applied external forces. Mechanical properties 
of metals used in the manufacture of various products and designs, are 
determined by mechanical testing. 
Mechanical tests are those in which specially prepared specimens 
(test pieces) of standard form and size are tested on special machines. 
A result of mechanical testing is numerical values of mechanical 
properties, i.e. values of stress or strain, at which changes the physical and 
mechanical condition of the material. 
The mechanical properties are about the behavior of materials when 
subject to forces. When a material is subject to external forces, then internal forces are set up in the material, which oppose the external forces. 
The material can be considered to be rather like a spring. A spring, 
when stretched by external forces, sets up internal opposing forces which 
are readily apparent when the spring is released and they force it to contract. A material subject to external forces which stretch it is said to be in 
tension (Figure 1.l, a). A material subject to forces which squeeze it is 
said to be in compression (Figure 1.1, b). If a material is subject to forces 
which cause it to twist or one face slide relative to an opposite face then it 
is said to be in shear (Figure 1.1, c). 
An object, in some situations, can be subject to both tension and 
compression, e.g. a beam (Figure 1.2) which is being bent, the bending 
causing the upper surface to contract and so be in compression and the 
lower surface to extend and be in tension. 

Figure 1.1 – Scheme of load application:  
a – tension; b – compression; c – shear 

 

Figure 1.2 – Scheme of load application: bending 

Stress and strain 
In discussing the application of forces to materials an important aspect is often not so much the size of the force as the force applied per unit 
area. Thus, for example, if we stretch a strip of material by a force P applied over its cross-sectional area F (Figure 1.3), then the force applied 
per unit area is F / A. 

 

Figure 1.3 – Scheme of the force applied per unit area 

The term stress, symbol σ, is used for the force per unit area: 

 
σ = P / F. 
(1.1) 

Stress has the units of pascal (Pa), with 1 Pa being a force of 1 newton per square metre, i.e. 1 Pa = 1 N/m2. 
The stress is said to be direct stress when the area being stressed is 
at right angles to the line of action of the external forces, as when the material is in tension or compression. Shear stresses are not direct stresses 
since the forces being applied are in the same plane as the area being 
stressed. The area used in calculations of the stress is generally the original area that existed before the application of the forces. The stress is thus 
sometimes referred to as the engineering stress, the term true stress being 
used for the force divided by the actual area existing in the stressed state. 
When a material is subject to tensile or compressive forces, it 
changes in length (Figure 1.4). 

 

Figure 1.4 – Change in the length of the sample:  
a – tensile strain; b – compressive strain 

The term strain, symbol ε, is used for: Strain = change in length / 
original length or  

 
ε = Δl / l0, 
(1.2) 

where Δl – change in length, mm;  
l0 – original length, mm. 

Since strain is a ratio of two lengths it has no units. Thus we might, 
for example, have a strain of 0.01. This would indicate that the change in 
length is 0.01 × the original length. However, strain is frequently expressed as a percentage: 

 
Strain as ε % = (change in length / original length) · 100 %. 

Thus the strain of 0.01 as a percentage is 1 %, i.e. this is when the 
change in length is 1 % of the original length. 

1.2 Deformation and fracture 

1.2.1 Elastic deformation 

Elasticity modulus 
Deformation is the ability of a material to change its shape and size 
under stress-loading. Elastic deformation is the material ability to return to 
its shape and size after loading is removed. If the material changes its shape 
after removal of loading then this kind of deformation is called plastic. 
Material response at elastic deformation is well described by Hooke 
law that determines direct proportion of stress and elastic deformation. 
Figure 1.5 shows elastic range of dependence “strain – stress” for such 
different types of deformation as tension, torsion (shear) and hydrostatic 
compression. Slopes of these lines characterize the E, G, K, respectively. 
So E is called Young’s module, G – shear module, and K – bulk (volume 
elasticity) module. Elasticity modules define increasing stress intensity in 
the process of elastic deformation. 

 

Figure 1.5 – Elasticity modulus 

Elasticity modules are related with stress and strain by following 
equations: 

 
E = S / e, 
(1.3) 
 
G = t / g, 
(1.4) 
 
K = P / χ, 
(1.5) 

where S and t corresponds to normal and tangent stresses respectively;  
P – hydrostatic pressure; 
e and g corresponds to strains;  
χ – relative reduction of volume. 

If we consider atomic conception of elastic deformation then its 
mechanism is implemented in atoms reversible movements from equilibrium position in crystal lattice. An increase in atomic displacement leads 
to elastic deformation growth. Normally elastic deformation in metals can 
not be large (for example less then 0.1 % of relative elongation) because 
atoms are able to move reversibly just for a very small distance. 
Physically, elasticity module characterizes the material resistance to 
atoms displacement from equilibrium positions and as a result to elastic 
deformation, elasticity modules define stiffness of the materials. 
In no stress condition metal atoms oscillate near equilibrium positions in crystal lattice. Transaction forces between adjacent atoms on the 
one hand are made up of attraction forces between positive ions and electrons and on the other hand – repulsion forces between ions due to the 
electron covers deformation. Figure 1.6 shows the curves which characterize transaction forces dependence on a distance between atoms. Curve 1 
corresponds to repulsion forces, curve 2 – attraction forces and 3 – outcome curve. This shows that the repulsion forces grow with the approach 
of atoms to each other. Naturally attraction forces smoothly decrease with 
the increase in the distance between atoms. 

 

Figure 1.6 – Transaction forces dependence on a distance between atoms 

The outcome force becomes equal to zero at some “A” distance, 
which corresponds to atoms equilibrium position in crystal lattice. Slope 
angle tangent of linear part on curve 3 characterizes intensity of stress 
build-up that is necessary for elastic displacement from equilibrium positions or in other words the elasticity module.  
The modulus of normal elasticity E depends only to a comparatively small extent on the structure, heat treatment, and composition of an 
alloy. It is determined, mainly, by the type of crystal lattice. The modulus 
of elasticity are as follows for certain important metals (Table 1.1). 

Table 1.1– The modulus of elasticity of pure polycrystalline metals at room temperature 

Metal 
Fe 
Ni 
Cu 
Al 
Ti 
Cr 
Mo 
Zn 
Co 

E×10–5, MPa
2.17 
2.05 
1.25 
0.72 
1.08 
2.40 
8.47 
0.94 
2.04 

G×10–5, MPa
0.89 
0.78 
0.46 
0.27 
0.41 
0.90 
1.22 
0.37 
0.76 

Iron, which has a high modulus of elasticity, is the most important 
of engineering materials. 
There is one more parameter for elastic deformation and that is 
called Poisson ratio (marked as ν). This important parameter is defined as 
relationship of transversal elastic deformation to axial one. All four parameters are well related between each other by following equations: 

 
E = 2G (1 + ν); 
(1.6) 
 
E = 3K (1 – 2ν). 
(1.7) 

Expressions (1.3) – (1.5) determine relation between stresses and 
strains in the same direction. Although in some cases stresses can not fit in 
with strains. For example a three axial deformation takes place at one axial tension. Then elementary Hooke law (exp (1.3) – (1.5)) must be 
changed for the generalized one establishing linear relationship between 
stresses and strains in any directions or in other words between all stress 
tensor and strain tensor components: 

 
Sx = K · χ + 2G · ex, 

 
Sy = K · χ + 2G · ey, 
(1.8) 

 
Sz = K · χ + 2G · ez, 

 
K = E · ν / [(1 + ν)(1 – 2ν)]. 

This generalised version of Hooke law is appropriate for isotropic 
material. However metals and alloys have a crystal structure and therefore 
they are mainly anisotropic bodies. Their elastic properties are not the 
same in different crystallographic directions. For anisotropic material 
generalised Hooke law gets more complicated because it represents direct 

Доступ онлайн
2 000 ₽
В корзину