Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Структурный подход в оценке теплопроводности легкого бетона

Покупка
Основная коллекция
Артикул: 744512.01.99
Изложен ряд теоретических и прикладных аспектов структурного подхода к оценке теплопроводности легкого бетона. Рассмотрен микроструктурный механизм и разработаны математические модели теплопроводности легкого бетона с учетом микро- и макроструктурных составляющих. Представлены исследования цементной матрицы как основного фактора, определяющего теплопроводность легкого бетона слитного строения. Приведены данные по изменению теплопроводности бетона в период его адаптации в ограждающей конструкции при эксплуатационных воздействиях. Для студентов и аспирантов строительных специальностей, научных и инженерно-технических работников научно-исследовательских и строительных организаций, специализирующихся в области теплофизики и технологии бетонов.
Грызлов, В. С. Структурный подход в оценке теплопроводности легкого бетона : учебное пособие / В. С. Грызлов. - 2-е изд., пересм. - Москва ; Вологда : Инфра-Инженерия, 2020. - 156 с. - ISBN 978-5-9729-0442-6. - Текст : электронный. - URL: https://znanium.com/catalog/product/1168608 (дата обращения: 25.04.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.

В. С. ГРЫЗЛОВ





                СТРУКТУРНЫЙ ПОДХОД В ОЦЕНКЕ ТЕПЛОПРОВОДНОСТИ ЛЕГКОГО БЕТОНА




Учебное пособие

Издание второе, пересмотренное








Москва Вологда «Инфра-Инженерия» 2020

УДК 691.32 (075.8)
ББК38.33
     Г91





Рецензенты:
А. А. Кочкин, д-р техн. наук, профессор (Вологодский государственный университет); Л. Б. Сватовская, д-р техн. наук, профессор (Петербургский государственный университет путей сообщения Императора Александра I)








      Грызлов, В. С.
Г91 Структурный подход в оценке теплопроводности легкого бетона : учебное пособие / В. С. Грызлов. - 2-е изд., пересм. - Москва ; Вологда : Инфра-Инженерия, 2020. -156 с. : ил., табл.
          ISBN 978-5-9729-0442-6

          Изложен ряд теоретических и прикладных аспектов структурного подхода к оценке теплопроводности легкого бетона. Рассмотрен микроструктурный механизм и разработаны математические модели теплопроводности легкого бетона с учетом микро- и макроструктурных составляющих. Представлены исследования цементной матрицы как основного фактора, определяющего теплопроводность легкого бетона слитного строения. Приведены данные по изменению теплопроводности бетона в период его адаптации в ограждающей конструкции при эксплуатационных воздействиях.
          Для студентов и аспирантов строительных специальностей, научных и инженерно-технических работников научно-исследовательских и строительных организаций, специализирующихся в области теплофизики и технологии бетонов.
                                                           УДК 691.32 (075.8)
                                                           ББК38.33







ISBN 978-5-9729-0442-6

  © Грызлов В. С., 2020
                         © Издательство «Инфра-Инженерия», 2020
                         © Оформление. Издательство «Инфра-Инженерия», 2020

        Оглавление



      От автора...................................................4
      Введение....................................................6

      Глава 1. Методология структурного подхода в бетоноведении.......12
      1.1. Системно-структурный анализ бетона....................12
      1.2. Общие критерии структурной чувствительности легкого бетона.21

      Глава 2. Термодинамика и теплопередача.....................30
      2.1. Термодинамический процесс.............................31
      2.2. Производство энтропии.................................40
      2.3. Феноменологическая теплопроводность...................45

      Глава 3. Структурный механизм теплопроводности..................52
      3.1. Фононная теплопроводность.............................52
      3.2. Теплопроводность и диссипативность микроструктуры бетона...61
      3.3. Теплопроводность вяжущих систем.......................71

      Глава 4. Физико-математическая модель теплопроводности бетона...92
      4.1. Обзор структурных моделей теплопроводности............93
      4.2. Вывод и анализ физико-математической модели...........97
      4.3 Прикладное прогнозирование теплопроводности легкого бетона..105

      Глава 5. Теплофизика адаптационного периода бетона........115
      5.1. Температурно-влажностное состояние...................115
      5.2. Напряженно-деформированное состояние.................128

      Глава 6. Сопротивление теплопередаче ограждения...........135

      Заключение................................................149
      Литература................................................151


3

              Светлой памяти академика Российской академии архитектуры и строительных наук, доктора технических наук, профессора Павла Григорьевича Комохова посвящается

        От автора



     В 1992 г. была опубликована монография «Структурная механика и теплофизика легкого бетона», написанная в соавторстве с академиком Российской академии архитектуры и строительных наук П.Г. Комоховым. Прошло более 15 лет, однако изложенные в данной монографии положения остаются актуальными и в настоящее время. Теоретическая уникальность структурной механики бетона заключается в том, что создается возможность практического обоснования возникновения структурных сил различного действия и направления.
     Разрабатывая теоретические основы структурной механики бетонов, П.Г. Комохов впервые раскрыл структурно-энергетические и механико-энергетические аспекты процессов гидратации, твердения и долговечности цементного камня, а также решил задачу механико-технологического торможения условий разрушения бетонов ускоренного твердения.
     Дальнейшее распространение ряда положений структурной механики позволило не априорно подойти к вопросам теплофизики легких бетонов. Актуальность проблемы перспективного развития легкого бетона как важнейшего научно-технического направления в строительстве потребовала обосновать ряд научных положений и закономерностей по количественной оценке его структурночувствительного состояния и выдвижению теплопроводности как целевой установки в сложной системе технологии изготовления наружных ограждающих конструкций зданий.


4 Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона

     Легкий бетон как конструкционный и теплоизоляционный материал имеет свою большую историю. Его свойства и особенности структуры в современном научно-техническом развитии становятся более универсальными, перспективными, если при этом учитываются экологизация окружающей среды и экономия энергозатрат на отопление гражданских зданий. Поэтому, возвращаясь к вопросам структурообразования легкого бетона, необходимо более глубоко оценить его потенциальные возможности, упорядочить и систематизировать их в плане теплотехнической эффективности.
     Автор не претендует на исчерпывающий материал и трактовку основных принципов и закономерностей. Однако он надеется, что монография будет способствовать развитию рассматриваемого направления - структурного подхода к оценке теплопроводности легкого бетона, вызывая активный обмен мнениями и идеями. Поскольку некоторые вопросы, затронутые в монографии, являются дискуссионными, автор будет признателен всем, кто выскажет свое мнение о путях их решения.

Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона 5

        Введение



     Фундаментальной проблемой современного этапа развития строительного материаловедения (в частности ее важнейшего раздела - бетоноведения) является разработка общей теории, объединяющей свойства и структуру (строение) бетонов в их взаимодействии с окружающей средой. В связи с этим развивается методология «структурного подхода», предопределяющая требования количественного описания процессов структурообразования как необходимого условия решения задач управления и оптимизации производства бетонов в классической модели «состав - структура -свойство». Данная модель является основой при разработке структурных теорий прочности, деформативности, проводимости, долговечности и др.
     Развитие жилищного и промышленного строительства, необходимость снижения уровня энергозатрат и повышения комфортности помещений требуют поиска новых резервов увеличения теплозащитных функций ограждающих конструкций. Задача поддержания заданного теплового режима в помещениях здания решается с учетом влияния тепловлагозащитных и теплоинерционных свойств ограждений, зависящих, в свою очередь, от структуры применяемых строительных композитов. Исследуются и прогнозируются их основные теплофизические свойства, и разрабатывается структурно-материаловедческий подход как метод рационального выбора ресурсосберегающего и энергетически эффективного способа изготовления и эксплуатации ограждающих элементов оболочки здания применительно к региональным климатическим параметрам.

6 Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона

Введение

     При проектировании ограждающей оболочки зданий все это объединяется в единый комплекс на базе основных принципов и положений строительной теплофизики.
     Строительная теплофизика является научной дисциплиной, изучающей процессы передачи тепла, переноса влаги, проникновения воздуха в здания и их конструкции и разрабатывающей инженерные методы расчета этих процессов. Строительная теплофизика включает в себя большой объем практических приложений по обеспечению необходимых условий жизнедеятельности человека во внутренней среде зданий, на базе которых разрабатываются нормативные требования к проектированию их ограждающей оболочки.
     Основная задача строительной теплофизики - обосновывать условия обеспечения нормативных требований к параметрам внутренней среды и уменьшению объемов тепломассопереноса при соблюдении наиболее целесообразных проектных решений ограждающей оболочки зданий.
     Теплофизика бетона должна выдвигаться как целевая установка в сложной системе технологии изготовления ограждающих конструкций. При этом необходимо учитывать, что формирование теплозащитных функций продолжается также и в процессе эксплуатации, поэтому они нелинейно и интегрально зависят от множества взаимообусловливающих и дополняющих факторов. По этой причине выделение какого-либо одного определяющего фактора, например плотности, представляется необоснованным.
     Геометрические параметры конструкций, при создании которых используется бетон, определяются во время проектирования путем установления нормативных и расчетных показателей сопротивлений. Для конструкций ограждающей оболочки зданий такими показателями являются: сопротивление теплопередаче, паропрони-цанию, воздухопроницанию, разрушению, т.е. сопротивление процессам переноса тепла, массы и импульсов, которые в значительной степени зависят от структурных характеристик бетонов. Поэтому при рассмотрении закономерностей этих процессов необходимо разграничивать две области исследования: формирование

   Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона 7

Введение

  рациональных (оптимальных) структур и количественное прогнозирование процессов переноса. Объединение этих областей в единый научно-аналитический комплекс позволяет сформировать основы прогнозно-расчетных показателей структурно-чувствительных характеристик бетона и включать их в нормативные документы с высокой степенью достоверности.
     Согласно теории теплопередачи основным механизмом переноса тепла в бетонах является теплопроводность. Теплопроводность бетона зависит от структуры, плотности, влажности и оценивается коэффициентом теплопроводности. Имеется определенная общая зависимость между плотностью и теплопроводностью. Чем легче бетон, тем, как правило, меньше его теплопроводность, поскольку уменьшение плотности бетона связано с повышением пористости, т.е. с вовлечением в объем бетона воздуха, являющегося в небольших порах прекрасным теплоизолятором. Однако на практике наблюдаются существенные отклонения от этой зависимости. Известно, что аморфные материалы менее теплопроводны, чем кристаллические. Так, обычное силикатное стекло с плотностью 2500 кг/м³ имеет теплопроводность примерно 0,8 Вт/(м • °С), т.е. такую же, как у кирпича, плотность которого составляет лишь 1700 кг/м³. Теплопроводность обычного бетона с плотностью, близкой к плотности стекла, равна примерно 1,4 Вт/(м • °С).
     Механизмы переноса тепла (теплообмен) - необратимые самопроизвольные процессы распространения теплоты в пространстве, осуществляются тремя способами: теплопроводностью, конвекцией и тепловым излучением.
     Теплопроводность - молекулярный перенос теплоты в телах (или между ними), обусловленный переменностью температуры в пространстве. Теплопроводность характеризует способность тела передавать тепловую энергию от одной его точки к другой, если между ними возникает разница температур.
     Конвекция - это процесс переноса теплоты при перемещении объемов жидкости или газа в пространстве из области с одной температурой в область с другой температурой, т. е. за счет переноса самой среды. Конвекция возможна только в текучей среде.

8 Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона

Введение

     Тепловое излучение - процесс распространения теплоты с помощью электромагнитных волн, обусловленный только температурой и оптическими свойствами излучающего тела; процесс превращения внутренней энергии вещества в энергию излучения, переноса излучения и его поглощения веществом.
     В природе и технике элементарные процессы распространения теплоты очень часто происходят совместно. Теплопроводность в чистом виде большей частью имеет место лишь в твердых телах. Конвекция теплоты всегда сопровождается теплопроводностью. Совместный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом. Процессы теплопроводности и конвективного теплообмена могут сопровождаться теплообменом излучением. Теплообмен, обусловленный совместным переносом теплоты излучением и теплопроводностью, называется радиационно-конвективным теплообменом. Иногда такие виды теплообмена называются сложным теплообменом.
     В связи с обострившейся проблемой энергосбережения резко ужесточились нормы теплозащиты зданий. Для удовлетворения этих требований начали широко внедряться многослойные ограждения. На сегодняшний день в практике строительства используются различные виды ограждающих конструкций, имеется обширная база методической и нормативной литературы в области строительной теплотехники, увеличился объем производимых теплоизоляционных материалов. Все это несколько снизило интерес проектировщиков и исследователей к бетонам как конструкционно-теплоизоляционным материалам, оставив им роль только конструкционных элементов по обеспечению несущей способности зданий. В то же время сечение бетонного элемента в ограждающих конструкциях в большинстве случаев составляет более 70 % общей толщины, а доля термического сопротивления может достигать 50 - 60 %. Поэтому прогнозирование и повышение теплозащитной эффективности бетона по-прежнему остается актуальной проблемой как в теплотехническом, так и в экономическом плане.
     Легкие бетоны - это бетоны с пониженной плотностью (в воздушно-сухом состоянии - менее 2000 кг/м³), обладающие внутри
   Грызлов В.С. Структурный подход в оценке теплопроводности легкого бетона 9

Введение

   зерновой и межзерновой пористостью, обусловленной пористостью применяемых заполнителей и специальными техническими приемами, используемыми при изготовлении бетонной смеси. Отличительной особенностью легких бетонов является разнообразие их структуры, характеризуемой строением растворной составляющей и степенью заполнения ею пространства между зернами крупного пористого заполнителя.
     По назначению различают следующие основные виды легких бетонов:
     -    конструктивные - бетоны несущих строительных конструкций зданий и сооружений, к которым предъявляются требования, характеризующие их механические свойства;
     -    конструкционно-теплоизоляционные - бетоны ограждающих строительных конструкций зданий, к которым предъявляются требования, характеризующие их теплоизоляционные и механические свойства;
     -    теплоизоляционные - специальные бетоны, предназначенные для тепловой изоляции конструкций, зданий и сооружений, к которым предъявляются требования, характеризующие их теплоизоляционные свойства.
     В зависимости от вида и происхождения крупного пористого заполнителя установлены следующие виды легких бетонов: керам -зитобетон, шунгизитобетон, аглопоритобетон, шлакопемзобетон, перлитобетон, шлакобетон, бетон на щебне из пористых горных пород, вермикулитобетон, шлакобетон (на топливном или пористом отвальном металлургическом шлаке), бетоны на аглопорито-вом или зольном гравии. Рациональная область применения легких бетонов - наружные стены и покрытия зданий, где требуется низкая теплопроводность и малый вес.
     Специфика сегодняшнего проектирования теплозащитной оболочки зданий связана с рядом особенностей:
     -   с повышением требований к тепловой защите, к внутреннему микроклимату, к энергетической эффективности зданий;
     -   с совершенствованием и унификацией методов проектирования тепловой защиты зданий;

10 Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона

Введение

     -    с оценкой влияния различного рода теплопроводных включений (мостиков холода) на теплозащиту зданий, возникающих в результате внедрения новых сложных конструктивных элементов в ограждающей оболочке;
     -    с необходимостью учитывать принцип применимости строительных материалов на условиях совместимости их служебных функций со средой применения в ограждающих конструкциях.
     Несмотря на большой объем накопленных данных, прикладная информация в области проектирования теплозащиты зданий отличается определенной фрагментарностью. Нормативные документы (СНиП, СН, ТСО и др.) не способствуют консолидации мнений и подвергаются серьезной критике со стороны научной и инженерной общественности. Весьма слабо представлены вопросы управления теплотехническими свойствами строительных композитов в части технологии их изготовления, что приводит к неоправданным ресурсоэнергетическим затратам и монополии трехслойных конструкций.
     Основной целью данной монографии является изложение методологических основ практико-теоретического обоснования расчетных показателей теплотехнических свойств конструкционнотеплоизоляционных легких бетонов. В связи с этим рассмотрены вопросы системно-структурного анализа, термодинамического метода и механизма структурной теплопроводности бетона; разработана физико-математическая модель теплопроводности с учетом адаптационного периода бетона; предложен ряд уточнений нормативной базы для проектирования теплозащиты зданий. В целом это позволяет заложить основы теории структурной теплопроводности бетона и сделать определенный вклад в общую теорию бетоноведения.

Грызлов В. С. Структурный подход в оценке теплопроводности легкого бетона 11