Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Supplementary Reading in Aircraft Engineering

Покупка
Основная коллекция
Артикул: 717696.01.99
Доступ онлайн
110 ₽
В корзину
Данное пособие содержит необходимый лексический и грамматический материал, предназначенный для овладения и совершенствования навыков перевода англоязычных статей в области авиастроения. Пособие снабжено большим количеством примеров и упражнений для самостоятельной работы. Предназначено для студентов дневной формы обучения специальностей 24.05.07 «Самолето- и вертолетостроение», 25.03.01 «Техническая эксплуатация летательных аппаратов и двигателей», а также для широкого круга лиц. интересующихся данной тематикой.
Данилова, И.И. Supplementary Reading in Aircraft Engineering : учеб. пособие / И.И. Данилова, О.Г. Мельник, А.А. Яковлев ; Южный федеральный университет. - Ростов-на-Дону ; Таганрог : Издательство Южного федерального университета, 2018. - 84 с. - ISBN 978-5-9275-2756-4. - Текст : электронный. - URL: https://znanium.com/catalog/product/1039669 (дата обращения: 19.04.2024). – Режим доступа: по подписке.
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ 
РОССИЙСКОЙ ФЕДЕРАЦИИ 
Федеральное государственное автономное  
образовательное учреждение высшего образования 
“ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ” 
 
Инженерно-технологическая академия 
 
 
 

И. И. ДАНИЛОВА, О. Г. МЕЛЬНИК, А. А. ЯКОВЛЕВ 
 
 
SUPPLEMENTARY READING  
IN AIRCRAFT ENGINEERING 

 

УчебноепособиеРостов-на-Дону – Таганрог 
Издательство Южного федерального университета 
2018 
 

 

 

УДК 811.111(075.В) 
ББК 81.2Англ-92 
 Д183 

Печатается по решению кафедры лингвистического образования Института управления в экономических, экологических и социальных системах 
Южного федерального университета (протокол № 6 от 30 января 2017 г.)  

Рецензенты: 
кандидат филологических наук, доцент  
Южного федерального университета Л. В. Буренко 

кандидат филологических наук, доцент Таганрогского института 
им. А. П. Чехова РГЭУ (РИНХ) М. Г. Аханова 
 

           Данилова, И. И. 
Д183         Supplementary Reading in Aircraft Engineering : учебное пособие / 
И. И. Данилова, О. Г. Мельник, А. А.  Яковлев ; Южный федеральный университет. – Ростов-на-Дону ; Таганрог : Издательство Южного федерального университета, 2018. – 84 с. 
 
ISBN 978-5-9275-2756-4  
Данное пособие содержит необходимый лексический и грамматический материал, предназначенный для овладения и совершенствования навыков перевода англоязычных статей в области авиастроения. Пособие снабжено большим 
количеством примеров и упражнений для самостоятельной работы. Предназначено для студентов дневной формы обучения специальностей 24.05.07 «Самолето- и вертолетостроение», 25.03.01 «Техническая эксплуатация летательных 
аппаратов и двигателей», а также для широкого круга лиц, интересующихся 
данной тематикой. 

УДК 811.111(075.В) 
ББК 81.2Англ-92 

ISBN 978-5-9275-2756-4  
 

© Южный федеральный университет, 2018  
© Данилова И. И., Мельник О. Г.,  
    Яковлев А. А., 2018 
© Оформление. Макет. Издательство 
    Южного федерального университета, 2018

СОДЕРЖАНИЕ 

Предисловие  ....................................................................................................4 
A318/319/320/321 General Description ...........................................................5 
MODULE 1 .....................................................................................................12 
Structure...........................................................................................................12 
Doors................................................................................................................14 
MODULE 2 .....................................................................................................19 
Flight Control System......................................................................................19 
Navigation........................................................................................................23 
MODULE 3......................................................................................................29 
Autoflight.........................................................................................................29 
Communication................................................................................................32 
MODULE 4......................................................................................................36 
Landing Gear....................................................................................................36 
Lights................................................................................................................40 
MODULE 5......................................................................................................43 
Hydraulic Power...............................................................................................43 
Pneumatic system.............................................................................................45 
MODULE 6......................................................................................................48 
Airborne Auxiliary Power................................................................................48 
Power Plant ......................................................................................................50 
MODULE 7......................................................................................................55 
Air Conditioning ..............................................................................................55 
Oxygen.............................................................................................................60 
MODULE 8......................................................................................................63 
Fuel System......................................................................................................63 
Water and Waste..............................................................................................67 
MODULE 9 .....................................................................................................70 
Fire Protection..................................................................................................70 
Ice and Rain Protection....................................................................................74 
MODULE 10 ...................................................................................................78 
Air Traffic Info Management...........................................................................78 
Electrical Power...............................................................................................80 
 

 

 

 
 
ПРЕДИСЛОВИЕ 
 
Современному авиаинженеру владение современным профессионально-ориентированным английским жизненно необходимо для успеха 
всех деловых инициатив и научных исследований. С каждым годом возрастает поток научно-технической информации, поступающий в Россию, и, к 
сожалению, значительная часть этой информации часто остается не прочитанной. В результате будущие специалисты зачастую понятия не имеют об 
актуальных технических и технологических инновациях, являющихся общеизвестными для мирового самолето- и вертолетостроения. Очевидно, 
что организация учебного процесса для студентов авиационного профиля в 
рамках изучения дисциплины «Иностранный язык для профессиональных 
(специальных) целей» должна быть направлена на формирование иноязычной профессиональной компетенции, которая позволит будущим специалистам участвовать в процессе создания и обслуживания современной мировой авиации. 
Авторы пособия выражают благодарность кандидату технических 
наук, доценту кафедры «Летательные аппараты» Института радиотехнических систем и управления ЮФУ И. В. Борисову за помощь при подготовке 
учебного пособия. 
Авторы с благодарностью примут все замечания, предложения и пожелания и учтут их в дальнейшей работе. Официальный сайт кафедры 
лингвистического образования ЮФУ: lo@tgn.sfedu.ru. 
 
 

 

THE A318/319/320/321 FAMILY. A GENERAL DESCRIPTION 

Before we design an aircraft, there are a lot of people we listen to: 
-  the businessman is interested in saving time, 
-  the cabin crew want the aircraft to be user friendly, 
-  the ground crew want easy maintenance, 
-  the pilot wants the aircraft to be dependable and easy to handle, 
-  management are interested in the bottom line and our sales team want an aircraft that can go out and beat the competition with. 
So when we have done the listening, we started to design a new generation 
150 seat. And what we design has been a great success on original lines all over 
the world. 
With the latest electronics Flight By Wire control and a new approach to 
the man machine interface, the A320 really is the state of the art in commercial 
aviation. But to the Airbus Industry approach to the success is to go further. 
By getting our ideas clear at the design stage we have made the A320 the 
start of a real family. 
For example, to stretch the 150 seat A320 into a 190 seat A321 we have 
simply to make local re-enforcements to the wing and center section and some 
minor changes to the flight control software. The rest could stay virtually the 
same. The A321 is an A320 with two extra fuselage sections and room for 36 
more paying customers. In the same way we have been able to shorten the A320 
to create the A319, the most economic member of the family. These three aircrafts between them cover the needs of the airlines from 124 to 185 seats. 
This family design makes it easier for an airline to cope with daily or seasonal variations in traffic and keep maintenance costs down because of the fleet 
effect. 
COMFORT 
The family effect is all the greater because the initial design was right. For 
passengers, this means an aircraft that is comfortable and convenient in every 
class. 
The versatility of the single aisle cabin lets operate as to match the market. 
First, business or economy class layouts as passenger demand requires. On regional flights, this means an equal comfort and useful flexibility for the airline. 
FLEXIBILITY 
The cabin intercommunication system makes it easy to vary cabin configuration. With the wide aisle, cabin crew and passengers can move more easily. A 

 SUPPLEMENTARY READING IN AIRCRAFT ENGINEERING 

6 

standard A321 with 196 passengers has a turn round time of only 34 minutes and 
this reduces to 29 minutes with the wide aisle option, 11 minutes faster than the 
competition. 
EFFICIENCY 
When the baggage isn't left behind, the cargo compartments can be unloaded and reloaded well within the passenger turn round time. 70% of A320 users have opted for the containerization system based on the LD 3 standard. A 
wise choice when you consider the increasing proportion of an airline income 
that comes from freight. 
Although the A321 is only 18% longer than the A320, its underfloor capacity is 40% greater, room for three more containers. 
TECHNOLOGY 
Advanced composite materials and the best aluminum alloys produce a 
rugged yet light airframe. High structural efficiency directly reduces operating 
costs. 
The A321 and A319 are assembled in Germany at a purpose built Deutsch 
Airbus plant. 
Since potential corrosion problems are addressed at source, structural inspection programs are simplified reducing maintenance costs and enhancing resell value. 
More advanced technology can be seen in the wings, which are lighter and 
optimized for computer control flight. Because of better aerodynamics, they 
made the A320 and the A321 the most fuel efficient commercial jets on the market. 
RANGE 
The Airbus A321 cost per passenger mille is by far the lowest in its category. The A319 has the lowest fuel consumption. The engines too interface with 
the flight by wire controls and the autopilot system. 
The whole family has the same man machine interface. The Primary Flight 
Display alone replaces six conventional electromagnetic instruments. 
Information is displayed on a six cathode ray tubes when it is needed, thus 
reducing the crew's workload. 
A major asset of computer-aided design is ease of access to system operation parameters. This is an advantage for the Centralized Fault Display System 
(CFDS), the key to maintenance guidance. Any failure is analyzed, the faulty 

THE A318/319/320/321 FAMILY. A GENERAL DESCRIPTION  

7 

component identified, the diagnosis made, and if necessary the information is 
transmitted to the ground in real time for time saving repair. 
The A320 family ties really come into their own when it comes to maintenance. Virtually all despairs, test devices and procedures are identical. No need 
for extra stocks or special training or facilities in service staff are available for 
the whole family. 
FLEET ADVANTAGE 
In terms of maintenance operating A320s, A321s and A319s is the same as 
operating a single type. The savings are enormous, common equipment, common 
staff. 
For cabin crew, the cabin is a just a little longer or shorter. For pilots the 
aircraft are virtually the same. They react in the same way to the same commands. This is true of all Airbus Industry new generation aircraft from the A319 
to the four engine A340. 
The simulator is common to the whole family. Basic crew conversion 
costs are therefore much lower for airlines, which base their fleets on Airbus 
technology. Because the crews can be used on different aircraft, operations are 
more flexible and efficient. 
Designing a 192/200 seater based on the A320 was a natural step. The cost 
effectiveness of the idea is even clearer in market forecast. 
The advent of the A319 is perhaps even more inhibitive. Now airlines can 
adapt a slack operating periods and expand their commercial networks to second 
relines while keeping the fleet effect. The A319 opens up development perspectives for smaller airlines too by providing them now with a high quality aircraft 
that would go on being attractive. 
By founding the first real family of aircraft, Airbus Industry has created a 
novel concept based on standardization and maximum commonality. We have 
provided the market with three cost effective aircrafts, which operate efficiently 
together. This family works as a team.

AIRCRAFT GENERAL 
The Single Aisle is the most advanced family aircraft in service today, 
with fly-by-wire flight controls.  
The A318, A319, A320 and A321 are twin-engine subsonic medium range 
aircraft. The family offers a choice of engines: 
- International Aero Engines and CFM International for the A319, A320 and 
A321. 

 SUPPLEMENTARY READING IN AIRCRAFT ENGINEERING 

8 

- Pratt & Whitney and CFM International for the A318.  
AIRCRAFT DIMENSIONS 
The picture shows the main dimensions for the A320. The A318, A319 
and A321 have exactly the same dimensions except that: 
- the A318 is 6.12 m (20 ft) shorter and 1.18 m (3ft 10in) higher, 
- the A319 is 3.74 m (12ft 3in) shorter, 
- the A321 is 6.93 m (22ft 9in) longer. 
FAMILY RANGE 
With a Maximum Take-Off Weight (MTOW) of 77 tons (170000 lbs), the 
A320 has a range of 3600 Nm as shown above. 
- For the A318, with an MTOW of 66 tons (145500 lbs), it is 3900 Nm. 
- For the A319, with an MTOW of 68 tons (150000 lbs), it is 4200 Nm. 
- For the A321, with an MTOW of 83 tons (183000 lbs), it is 3100 Nm. 
COCKPIT PRESENTATION 
The cockpit has adjustable seats for two crew members, a third occupant 
seat and, depending on the configuration a folding seat for a fourth occupant. 
Various furnishings and equipment are installed in the cockpit for the comfort, 
convenience and safety of the occupants. 
OVERHEAD PANEL 
The controls of most aircraft systems are located on the overhead panel. 
The overhead panel is divided into two main sections: 
- a FWD section including the system panels, 
- an AFT section including mainly the circuit breaker panel. 
GLARESHIELD 
The Flight Control Unit (FCU) includes the EFIS controls, and is used for 
control and monitoring of the Auto Flight System (AFS). It is located on the 
glareshield. The "Master Warning" and the "Master Caution" lights are also located on the glareshield. 
MAIN INSTRUMENT PANEL (ENHANCED) 
The enhanced single aisle aircraft main instrument panel instrumentation 
has been updated. Liquid Crystal Displays (LCDs) replace the existing CRTs. A 
single integrated electronic indicator, the Integrated Standby Instrument System 
(ISIS) replaces the standby instrumentation: Standby horizon, Airspeed indicator 
and Altimeter. 
 
 

THE A318/319/320/321 FAMILY. A GENERAL DESCRIPTION  

9 

CENTER PEDESTAL 
The center pedestal ergonomic design of the SA family aircraft gives the 
flight crew efficient access to multiple system controls without compromising 
safety. The panels are: 
- Switching panel 
- ECAM control panel (ECP) 
- Multipurpose Control Display Units (MCDU) 
- Radio Management Panels (RMPs) 
- Audio Control Panels (ACPs) 
- Thrust levers and thrust reverser levers 
- Pitch trim wheel 
- Engine start panel 
- Air Traffic Control / Traffic Collision Avoidance 
System panel (ATC/TCAS) 
- Flap/slat control handle 
- Speed brake control panel 
- Parking brake control panel 
- Cockpit door lock panel 
- Landing gear gravity extension handle 
- Printer 
- Multifunction disk drive unit 
- Pa handset at the rear of the pedestal 
SIDE CONSOLES 
The Conventional Aircraft control yoke is noticeably missing in the Airbus 
Single Aisle aircraft. The Side Stick Controller (SSC) replaces the Conventional 
Aircraft yoke. There is one SSC for each pilot mounted in the side consoles. 
The Aircraft nose wheel is steerable. The flight crew operates the Nose 
Wheel Steering (NWS) by using the NWS tillers mounted outboard of the SSC 
on the same side console. 
Behind the most forward side console are installed several other compartments along the outboard sides of the cockpit. These side consoles are used as 
stowage space for documents, oxygen masks, fire extinguisher and microphone 
and headset connections 
COCKPIT PHILOSOPHY 
Prior to the design of the A320 family aircraft, the designers examined 
previous generation aircraft cockpit system indications. A decision was made on 

 SUPPLEMENTARY READING IN AIRCRAFT ENGINEERING 

10 

the system indicator lights on the overhead panel that indicator lights do not 
come on when systems are in normal operation and there are no failures. 
This ergonomic design enabled the pilots to immediately see when a system is faulty or has been manually shut off. 
Most of the pushbuttons with light have two stable positions: pressed in 
and released out, each position is related to a control signal sent to a system. 
Pressed in (recessed): 
- normally used system activation (AUTO or ON), 
- temporarily used system activation (ON), 
- system activated for maintenance operation (ON) or override (OVRD). 
Released out (flush with the panel): 
- deactivation system (OFF), 
- manual activation of a system (ON), 
- activation of an alternate system (ALTN). 
Some pushbuttons have only one stable position: - released out. When 
pushed, they send a control signal to the system. 
PUSHBUTTON COLOR PHILOSOPHY 
The pushbuttons light and annunciator lights are in different colors according to their function. In normal operation, only green lights and, sometimes, blue 
lights come on. 
GROUND SUPPORT EQUIPMENT AND TOOLS  
The World Airlines Technical Operations Glossary (WATOG) definition 
of Ground Support Equipment (GSE) is: equipment required on the ground to 
support the operation and maintenance of the aircraft and all its airborne equipment. 
Airbus divides GSE into two categories: 
- tools, 
- standard GSE. 
Tools can be split into two categories: 
- standard tools, 
- specific tools. 
STANDARD TOOLS 
Standard tools are hand tools such as spanners, sockets, gauges, torque 
wrenches... 
The specifications (size, range, capacity, accuracy...) are given in the related Aircraft Maintenance Manual (AMM) task to let operators use the tool brand 

Доступ онлайн
110 ₽
В корзину