Текстовые фрагменты публикации
Фрагмент текстового слоя документа размещен для индексирующих роботов.
Для полноценной работы с документом, пожалуйста, перейдите в
ридер.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ
«МИФИ»
ТЕОРИЯ КАСКАДОВ
ДЛЯ РАЗДЕЛЕНИЯ БИНАРНЫХ
И МНОГОКОМПОНЕНТНЫХ
ИЗОТОПНЫХ СМЕСЕЙ
Под редакцией профессора В.Д. БОРМАНА
Рекомендовано УМО «Ядерные физика и технологии»
в качестве учебного пособия
для студентов высших учебных заведений
Москва 2011
ББК 24.13я7
УДК 546.02+621.039.8
Т 33
Теория каскадов для разделения бинарных и многокомпонентных
изотопных
смесей:
Учебное
пособие
/
Г.А. Сулаберидзе,
В.А. Палкин, В.Д. Борисевич, В.Д. Борман, А.В. Тихомиров; под ред.
проф. В.Д. Бормана. М.: НИЯУ МИФИ, 2011. 368 с.
В учебном пособии рассмотрены процессы изотопно-селективные переноса
в каскадах (многоступенчатых разделительных установках). Такие
установки используются для получения обогащённого урана и широкого
спектра стабильных и радиоактивных изотопов различных элементов,
применяющихся в ядерной энергетике, а также в перспективе будут использоваться
для переработки отработавшего ядерного топлива. В книге
описана как классическая теория разделения бинарной смеси изотопов
урана, так и дается анализ современного состояния исследований разделения
бинарных и многокомпонентных изотопных смесей в каскадах. Пособие
основывается на опубликованных отечественных и зарубежных
работах и материалах конференций. Приводятся примеры обогащения в
каскадах различных целевых изотопов из многокомпонентных изотопных
смесей.
Учебное пособие написано по материалам читаемого в НИЯУ МИФИ
курса «Молекулярно-кинетические методы разделения изотопов» и аналогичного
курса в УГТУ-УПИ для студентов старших курсов и аспирантов,
обучающихся по специальности «Физика кинетических явлений».
Пособие также может быть полезно для специалистов, работающих на
разделительных предприятиях.
Подготовлено в рамках Программы создания и развития НИЯУ
МИФИ.
Рецензент д.ф.-.м.н., профессор В.М. Жданов (НИЯУ МИФИ)
ISBN 978-5-7262-1527-3 © Национальный исследовательский
ядерный университет «МИФИ», 2011
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ ............................................................................................ 7
Список литературы .............................................................................. 20
ЧАСТЬ 1 ТЕОРИЯ КАСКАДОВ ДЛЯ РАЗДЕЛЕНИЯ
БИНАРНЫХ СМЕСЕЙ ...................................................... 22
1.1. Разделительный элемент, разделительная ступень.
Основные параметры и уравнения. ............................................. 23
1.2. Разделительная способность (мощность). Работа
разделения. Разделительный потенциал..................................... 27
1.3. Основные принципы каскадирования. Типы
разделительных каскадов ............................................................ 40
1.4. Основные параметры и уравнения симметричного
противоточного каскада ............................................................... 42
1.5. Критерии эффективности работы каскада .................................. 48
1.6. Идеальный каскад для разделения бинарной изотопной
смеси .............................................................................................. 50
1.6.1. Основные уравнения симметричного идеального
каскада. Классификация идеальных каскадов ...... …….50
1.6.2. Идеальный каскад с малым обогащением на ступени
(случай слабого обогащения) .......................................... 51
1.6.3. Идеальный каскад с одинаковым немалым
коэффициентом разделения на ступенях ....................... 58
1.7. Оптимизация каскада с заданными внешними
концентрациями целевого изотопа.
Сравнение идеального и оптимального каскадов...................... 67
1.8. Идеальный каскад с потерями ..................................................... 75
1.9. Прямоугольно-секционированные (ПСК) и прямоугольные
каскады (ПК) для разделения бинарных смесей ........................ 83
1.9.1. ПСК и ПК в случае «слабого обогащения»....................... 83
1.9.2. Противоточная ступень. Представление
разделительной колонны как прямоугольного
каскада из противоточных ступеней ................................. 87
1.9.3. Оптимизация ПК и ПСК в случае
слабого обогащения ............................................................ 93
1.10. ПК в случае произвольных обогащений
на его ступенях ......................................................................... 104
1.11. Нестационарные (переходные) процессы в каскадах ............ 108
1.11.1. Дифференциальное уравнение нестационарного
разделительного процесса.
Некоторые особенности нестационарных
процессов ..................................................................... 108
1.11.2. Приближенные решения уравнения
нестационарного процесса ......................................... 117
1.12. Несимметричные каскады ........................................................ 133
1.12.1. Основные уравнения несимметричного каскада.
Идеальный несимметричный каскад
с произвольным обогащением на ступени ................ 134
1.12.2. Несимметричный идеальный каскад с малым
обогащением на ступени ............................................ 143
1.12.3. Прямоугольный несимметричный каскад ................. 147
Контрольные вопросы к первой части ............................................. 148
Список литературы ............................................................................ 151
Приложение 1. Численный метод решения
уравнения нестационарного переноса .................. 156
Приложение 2. Основные правила операционного исчисления.
Операторное изображение ..................................... 159
Приложение 3. Значения корней трансцендентного
уравнения ................................................................. 163
ЧАСТЬ 2 ТЕОРИЯ КАСКАДОВ ДЛЯ РАЗДЕЛЕНИЯ
МНОГОКОМПОНЕНТНЫХ СМЕСЕЙ ......................... 164
2.1. Разделительная ступень. Основные характеристики
и уравнения ступени .................................................................. 165
2.2. Основные уравнения противоточного симметричного
разделительного каскада ............................................................ 173
2.3. Каскад в случае слабого разделения ......................................... 177
2.3.1. Основные уравнения ......................................................... 177
2.3.2. Исследование каскадов заданного профиля
методом ортогональной коллокации .............................. 179
2.3.3. Метод квазилинеаризации ................................................ 183
2.3.4. Модельные каскады.
Анализ прямоугольно-секционированного
каскада на основе модельных каскадов ........................... 188
2.3.4.1. Q-каскады («свободные» каскады)
и их свойства ........................................................ 188
2.3.4.2. R-каскады и их свойства ...................................... 202
2.3.4.3. Решение системы уравнений каскада
с несмешением по относительной
концентрации для выбранной пары
компонентов методом Б.В.Жигаловского ......... 205
2.3.4.4. R-каскад с дополнительным потоком
отбора ..................................................................... 217
2.3.4.5. Аппроксимация каскадов непрерывного
профиля прямоугольно-секционированным
каскадом ................................................................ 224
2.3.5. Нестационарные процессы в каскаде .............................. 231
2.3.5.1. Уравнение нестационарного переноса
в каскаде ................................................................ 231
2.3.5.2. Некоторые особенности нестационарных
процессов ............................................................... 236
2.3.5.3. Переходные процессы в двойных каскадах. ...... 245
2.3.6. Разделение многокомпонентной смеси
изотопомодифицированных молекул в каскаде
при наличии внутрифазного изотопного обмена ........... 251
2.4. Каскады с немалыми обогащениями на ступенях ................... 265
2.4.1. Основные уравнения ......................................................... 265
2.4.2. Обзор численных методов решения системы
уравнений переноса в каскадах
заданного профиля ............................................................. 272
2.4.2.1. «Классический» итерационный метод ................ 273
2.4.2.2. «Матричный» метод ............................................. 273
2.4.2.3. Метод, основанный на решении системы
уравнений переходного (нестационарного)
процесса в каскаде ............................................... 276
2.4.2.4. Метод квазилинеаризации ................................... 281
2.4.2.5. Метод расчета на основе приближения
фактора разделения .............................................. 286
2.4.3. Влияние параметров каскада на состав
получаемой смеси ............................................................. 288
2.4.4. Модельные каскады и их свойства .................................. 293
2.4.4.1. Каскад с постоянными относительными
коэффициентами разделения на ступенях
(«квазиидеальный» каскад) ................................. 293
2.4.4.2. Квазиидеальный каскад с несмешением
относительных концентраций двух заданных
компонентов смеси (R-каскад) ............................ 298
2.4.4.3. Оптимальный каскад с заданными
концентрациями по целевому изотопу.
Сравнение с R-каскадом ...................................... 314
2.4.4.4. Квазиидеальный каскад с потерями
рабочего вещества на ступенях .......................... 318
2.4.4.5. Квазиидеальный каскад с двумя
питающими потоками ......................................... 325
Контрольные вопросы ко второй части ........................................... 331
Список литературы ............................................................................ 333
ЧАСТЬ 3 ПРИМЕРЫ ПРАКТИЧЕСКОГО РАЗДЕЛЕНИЯ
НЕУРАНОВЫХ ИЗОТОПОВ НА КАСКАДАХ
ГАЗОВЫХ ЦЕНТРИФУГ ................................................ 340
3.1. Понятия и приемы, используемые в практике
центробежного каскадирования ................................................ 341
3.2. Многопараметричность разделительных задач ....................... 343
3.3. Организация разделительной кампании ................................... 346
3.4. Примеры разделительных кампаний ......................................... 351
3.5. Некоторые экономические аспекты центробежного
разделения стабильных изотопов .............................................. 362
Контрольные вопросы к третьей части ............................................ 366
Список литературы ............................................................................ 366
ВВЕДЕНИЕ
В предлагаемой читателю книге излагается теория процессов
изотопно-селективного переноса в сложных многоступенчатых установках (
каскадах), предназначенных для концентрирования – получения
высокообогащенных изотопов. Книга написана по материалам
опубликованных работ в иностранной и отечественной литературе
и докладов, сделанных на прошедших в последние годы
конференциях по разделению изотопов. Основные положения теории
каскадов были разработаны в связи с проблемой разделения
изотопов урана авторами П. Дираком, К. Коэном, Р. Пайерлсом,
Р. Фейнманом [1], С.Л. Соболевым, Я.А. Смородинским, Б.В. Жигаловским,
М.М. Добулевичем, Н.А. Колокольцовым, А.А. Сазы-
киным, М.А.Ханиным, В.Я. Бирюковым [2,3], Е. фон Халле,
А.Канагава, И. Ямамото и другими [4, 5]. Со времени опубликования
краткого изложения теории каскадов для разделения бинарных
смесей в статье Б. Бриголли «Теория каскадов» в коллективной монографии «
Обогащение урана» под редакцией С. Виллани [4] прошло
более 25 лет. В последние десятилетия было опубликовано
много работ, посвященных разделению многокомпонентых изотопных
смесей, теории идеальных и оптимальных противоточных
каскадов из ступеней с произвольным обогащением, теории нестационарных
процессов в каскадах для разделения многокомпонентных
смесей, методам анализа оптимальных каскадов с произвольным
обогащением на ступени. В последние годы были экспериментально
исследованы процессы разделения и наработаны опытные
партии изотопов ряда элементов [5].
В настоящей книге сделана попытка систематического изложения
общих вопросов теории и её современного состояния. Предлагаемая
читателю книга не является руководством по практическим
расчетам каскадов, однако собранный и обобщенный в книге материал
может служить учебным пособием для студентов старших
курсов, обучающихся по специальности «Физика кинетических
явлений». Книга полезна для аспирантов и специалистов разделительных
предприятий.
В настоящее время каскады используются в промышленном
масштабе для получения изотопов урана, а также в опытно-
промышленном производстве изотопов более 30 элементов таблицы
Менделеева. В производстве ядерного топлива, обогащенного
изотопом урана 235U, используются каскады, в которых применяется
метод газовой диффузии (США, Франция, Китай) и экономически
более эффективный метод газовой центрифуги (Россия, англо-
голландско-немецкий консорциум Urenco, Япония, Китай, Бразилия).
Для обогащения изотопов ряда легких элементов, таких как
бор, углерод, азот, кислород используются методы дистилляции и
химического изотопного обмена.
Увеличение концентрации ценного компонента, вызванное первичным
эффектом разделения в упомянутых методах, весьма мало
с точки зрения практических потребностей. Поэтому высокое обогащение
в каскаде получают путем многократного повторения
процесса разделения в последовательности аппаратов каскада.
Первичный эффект разделения в аппарате каскада вызывает пространственное
изотопно-селективное перераспределение молекул
смеси. Так в методе газовой центрифуги возникает первичный эффект
разделения молекул газа, содержащих различные изотопы с
разными массами по радиусу быстро вращающегося ротора за счет
центробежного поля, величина которого пропорциональна массе
молекул. При разделении изотопов урана рабочим газом является
гексафторид урана (UF6), молекулы которого содержат изотопы
235U и 238U и поэтому имеют различные массы. В настоящее время
метод газовой центрифуги стал основным для концентрирования
изотопов более 20 химических элементов. В методе газовой диффузии
эффект разделения достигается при пропускании изотопической
смеси газов через канал с пористыми стенками при условии,
когда длина свободного пробега молекул сравнима с диаметром
пор. В этих условиях поток каждого компонента смеси через пористую
стенку канала зависит от массы молекул, причем скорость
диффузии больше для легкого компонента. При движении потока
смеси газов вдоль канала часть его проникает через пористую
стенку. В результате прошедшая через стенку смесь обогащается
легким газом, а не прошедший через стенку поток обедняется легким
газом. Методы газовой центрифуги и газовой диффузии относятся
к молекулярно-кинетическим методам разделения. Общим
для этих методов является использование газа как рабочей среды и
газокинетических первичных эффектов для разделения молекул,
содержащих различные изотопы. К этому классу разделительных
методов относятся также методы термодиффузии и масс-диффузии
и метод разделительного сопла. В методе термодиффузии первичный
эффект разделения вызывается в смеси молекул градиентом
температуры. В стационарном состоянии возникает такая разность
концентраций, при которой диффузионный поток, вызванный градиентом
концентрации, равен термодиффузионному потоку, вызванному
градиентом температуры. В области пониженной температуры,
как правило, концентрируются тяжелые молекулы, а области
повышенных температур смесь обогащается легкими молекулами.
Метод термодиффузии применяется в настоящее время для
получения небольших количеств (1-100 г) изотопов легких (инертных)
газов. В методе масс-диффузии первичный эффект разделения
возникает за счет различной скорости диффузии молекул с различными
изотопами в потоке другого газа, например, газа неона в потоке
паров ртути. Нестационарный бародиффузионный эффект ро-
странственного разделения компонент смеси, вызванный градиентом
давления в поле центробежных сил, используется в методе
разделительного сопла. Такое поле создается при движении газа
вдоль вогнутой поверхности сверхзвукового разделительного сопла
с вогнутой и выпуклой стенками, тяжелые молекулы при этом концентрируются
на периферии у вогнутой стенки.
В методах дистилляции и химического изотопного обмена используются
первичные эффекты разделения в двухфазных системах
жидкость – газ. Разделение при дистилляции определяется не-
равновероятным распределением молекул с различными изотопами
между двумя фазами – паром и жидкостью. Равновесные парциальные
давления компонентов изотопической смеси зависят не
только от масс молекул, но и от других молекулярных параметров
и параметров взаимодействия молекул в жидкой фазе. Поэтому методом
дистилляции могут быть разделены изотопические смеси
молекул с одинаковыми массами. В случае химического изотопного
обмена эффект разделения определяется константой равновесия
реакции изотопного обмена и, в общем случае, константой межфазного
обмена.
В результате действия первичного эффекта разделения возникают
обогащенные и обедненные части смеси. Для количественного
описания первичного эффекта разделения используют величину
коэффициента разделения qe, которая для двухкомпонентной смеси
А+В вводится следующим образом:
1
1
2
2
/(1
)
/(1
)
A
А
e
A
A
c
c
q
c
c
−
=
−
.
Здесь с1А и c2А – концентрации извлекаемого компонента А в
обогащенной и обедненной частях смеси в результате ее разделения,
cВ=1-cА. В случае молекулярно-кинетических методов коэффициент
qe определяет отношение относительных концентраций
(cА/cВ) в различных геометрических частях объема аппарата, в которых
концентрируются обогащенные и обедненные смеси. Так,
при разделении в газовой центрифуге – это области у стенки и
вблизи оси вращающегося ротора. В случае разделения в двухфаз-
ных системах коэффициент qe определяется отношением относительных
концентраций в различных фазах.
Отметим, что в стационарном режиме в разделительный аппарат
непрерывно поступает поток питания и одновременно из него выходят
два потока: один, обогащенный ценным компонентом, и другой,
обедненный им. При этом полный коэффициент разделения
зависит от величин потоков и их соотношения и может оказаться
как меньше, так и больше коэффициента разделения, характеризующего
первичный эффект qe.
Величины коэффициента qe для ряда методов разделения, используемых
для производства различных изотопов, приведены в
табл. В.1.
Видно, что величина qe незначительно превышает единицу
(qe −1<<1). Это означает, что в результате первичного эффекта разделения
концентрация ценного (целевого) изотопа в потоке, обогащенном
этим изотопом, по сравнению с концентрацией в обедненном
потоке и потоке питания изменяется на малую величину.
Таблица В.1
Первичный эффект разделения для ряда изотопических смесей
Изотопическая
смесь
Эффект
разделения
Условия
Значение
qe
Литература
235U19F6-
238U19F6
Разделение
в
центробежном
поле
Линейная
скорость
вращения,
V=500
м/сек
Т=300К
1,026
[1, 2, 4]
235U19F6-
238U19F6
Разделение
на
пористой перегородке (
газовая
диффузия)
Т=300К
1,004
2
[2, 4]
20Ne-22Ne
Термодиффузия
T1=300 K
T2=700 K
1,012
[2,9]
36Ar-40Ar
Термодиффузия
T1=300 K
T2=700 K
1,008
[2,9]
78Kr – 84Kr
Термодиффузия
T1=300 K
T2=700 K
1,004
[2,9]
20Ne - 22Ne
Масс-диффузия
Разделение
в
потоке
паров ртути
1,2
[8]
10B19F3-
11B19F3
Химический
изотопный
обмен
в системе
С6Н5ОСН3(аниз
ол)-BF3
Т=298К
1,03
[2]
H2
16O-
H2
18O
Дистилляция
воды
Т=323К
1,007
8
[9]
12C16O-
13C16O
Дистилляция
оксида углерода
Т=84,7К
1,006
4
[10]
H14NO3|ж-
15NO|газ
Химический
изотопный
обмен
в системе
азотная кислота
– оксиды азота
Т=313К
концентрация
кислоты
Хкислоты=9,6
М
1,053
[11, 12]
Окончание табл. В.1
Изотопическая
смесь
Эффект
разделения
Условия
Значение
qe
Литература
14N16O-
15N16O
Дистилляция
оксида азота
Т=119,6К
1,028
[13]
14N16O-
14N18O
Дистилляция
оксида азота
Т=121К
1,034
[14]
Так, для эффекта разделения изотопов кислорода 16О и 18О в виде
молекул воды H2
16О и H2
18О в системе водяной пар – жидкость разница
концентраций 18О в равновесии между жидкостью и паром составляет
%
003
,0
≅
Δc
. Другой пример – первичный эффект разделения
по радиусу ротора в центробежном поле сил. При линейной
скорости вращения ротора
500
≅
V
м/с концентрация молекул
235UF6 у оси вращающегося ротора составит
%
77
,0
≅
c
, то есть по
сравнению с начальной концентрацией, равной ≈ 0,7%, возрастание
равно 0,07%. Аналогичные малые изменения концентраций возникают
и при других рассмотренных эффектах разделения. Исключение
составляют первичные эффекты разделения в лазерном, плазменном
и электромагнитном методах разделения, для которых коэффициент
разделения q достигает значений 10-100. В этих методах
кроме проблемы умножения первичного эффекта разделения
возникает также задача увеличения доли потока исходного вещества,
которая может участвовать в процессе разделения.
Для получения высоких концентраций изотопов используют
различные методы, позволяющие увеличить разделение путем умножения
первичного эффекта в одном аппарате, а также соединение
отдельных аппаратов в каскад. В газовой центрифуге для увеличения
радиального эффекта разделения возбуждают осесимметричное
замкнутое циркуляционное течение разделяемой смеси, при
котором у стенки ротора и вблизи оси газ движется в противоположных
направлениях. Такое движение может быть обеспечено,
например, за счет подтормаживания газа у одного из торцов ротора.
Поскольку газ в центробежном поле сил у стенки ротора обогащен
тяжелыми молекулами, а у оси – легкими, то в таком противотоке
возникает перенос тяжелых и легких молекул к разным тор-
цам. Одновременно нарушение равновесия приводит к уменьшению
радиального разделения и к возникновению диффузионных
потоков в радиальном направлении, стремящихся восстановить
(увеличить) разность концентраций в радиальном направлении. В
результате в закрытом роторе вдоль его оси может установиться
разность концентраций, которая будет превосходить первичный
эффект разделения. Так, при коэффициенте разделения между
нижней и верхней торцами ротора, равном 2, концентрация молекул
235U19F6 в обогащенном газе составит ~1,4%, что превышает
природную концентрацию
%
7,0
≅
c
в потоке питания на 0,7%.
Возбуждение циркуляции используется также для умножения первичного
эффекта и в других аппаратах молекулярно-кинетических
методов (термодиффузионных и масс-диффузионных колоннах).
Для умножения первичного эффекта разделения в системе газ –
жидкость используют дистилляционные колонны и колонны химического
изотопного обмена. Для увеличения поверхности контакта
между жидкостью и газом (паром) колонны, как правило, заполняют
насадкой, состоящей из мелких элементов, например, коротких
спиралей, на поверхности которых формируют тонкую пленку
жидкости. Остальной объем колонны занимает газ. Если потоки
жидкости и газа равны нулю и температура постоянна по длине
колонны, то в колонне устанавливается первичный равновесный
эффект разделения между газом и пленкой жидкости на насадке. В
колонне возбуждают встречные потоки жидкости и газа. Для этого,
например, в случае дистилляции газ в верхней части колонны конденсируют,
а жидкость внизу колонны испаряют. В результате в
колонне возникает поток жидкости по поверхности насадки вниз
колонны к испарителю, а поток газа – вверх от испарителя к конденсатору.
Поток газа переносит концентрирующийся в газе более
летучий компонент смеси вверх по колонне, а поток жидкости –
менее летучий компонент вниз по колонне. Это приводит к уменьшению
первичного эффекта разделения в каждом сечении колонны,
и поэтому возникает преимущественное испарение из пленки
жидкости более летучего компонента. В результате циркуляции
вещества вдоль колонны и вызванного циркуляцией селективного
переноса между верхом и низом колонны установится разность
концентраций, которая в определенных условиях может намного
превышать разность концентраций при первичном эффекте разде-
ления. Можно выделить высоту колонны h, на которой коэффициент
разделения в неравновесном стационарном процессе переноса
равен равновесному коэффициенту для первичного эффекта разделения.
Для используемых в разделении изотопов колонн высота h
обычно составляет 2-10 см. При длине колонны 1500 см, если принять,
что h=5 см, то первичный эффект разделения повторяется
~300 раз. Поэтому при разделении изотопов 16О – 18О дистилляцией
воды и при значении qe=1,01 можно получить воду с концентрацией
изотопа 18О, равной ~4%.
В рассмотренных случаях умножения эффекта разделения в газовой
центрифуге и дистилляционной колонне достигают концентрации
бόльшие, чем при первичном эффекте разделения. Однако
эти концентрации могут оказаться меньше, чем требуемые. Так,
для энергетических атомных реакторов необходимо топливо с концентрацией
изотопа 235U 3-5%, которая существенно больше, чем
та, что достигается на одиночной центрифуге при умножении первичного (
радиального) эффекта разделения. Для использования тяжелого
стабильного изотопа
18О в медицинской позитронно-
эмиссионной томографии необходима его концентрация >95%. Поэтому
для получения продуктов с высокой концентрацией изотопов
необходимо соединять аппараты, например, газодиффузионные
ступени, центрифуги, последовательно друг с другом, передавая
обогащенный выделяемым изотопом поток в последующий аппарат
(ступень разделения). Поскольку производительность одного аппарата
ограничена, то может возникнуть необходимость для обеспечения
требуемой производительности соединять в одной ступени
разделения отдельные аппараты параллельно друг другу. Поток
питания исходной смеси подают на вход промежуточной ступени
каскада, а потоки отбора и отвала, обогащенные и обедненные выделяемым
изотопом, выводят, как правило, из крайних ступеней
каскада. Очевидно, что, чем ниже концентрация выделяемого изотопа
в потоке питания, тем большее число ступеней должно быть в
каскаде и большее количество исходного вещества требуется перерабатывать
для выделения единичной массы изотопа. При заданной
концентрации в отборе и заданном потоке отбора по мере повышения
концентрации в последовательных ступенях каскада от точки
питания к концам каскада перерабатываемый ступенями поток или
число параллельных аппаратов в ступенях можно уменьшать. При